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CHAPTER 1

Introduction

Light is indispensable in our lives. It is crucial for life as we know on Earth, as
many biological processes such as photosynthesis depend on interaction of light
with matter [1]. It is very important for us humans, as much of our perception
about our environment is made possible with light, through vision [2]. We, human
beings have always thrived to understand nature and modify it for our own needs.
Light has not skipped our interest. Since ancient civilizations, we developed
theories about light and made devices to manipulate it [3].

Most media in nature are examples of disordered media, e.g. milk, clouds,
leaves of plants, human skin, blood. Disorder is also intrinsic in man-made struc-
tures. Despite the effort of fabricating high quality devices intended for certain
functionalities, disorder often cannot be avoided and can hinder the device’s
performance [4–9]. Recently, many researchers are interested in making use of
disorder in devices rather than trying to avoid it [10–15].

Disorder is commonly encountered in nature and technology, hence it is a very
interesting subject of study in physics. Fascinating fundamental concepts of light
transport through disordered media are strongly related to possible technological
applications.

In this thesis, we study light transport through random photonic media. In gen-
eral, we are interested in understanding and controlling light transport through
such media. In particular, we focus our attention on measuring and studying the
optical transmission matrices of such media. Different types of samples are stud-
ied in this thesis; what they have in common is that they scatter light multiple
times, which is introduced in Section 1.1. We make an introduction to transmis-
sion matrices in Section 1.2. Finally, widely used powerful methods are described
to control light transport through random photonic media in Section 1.3. In Sec-
tion 1.4, we give an overview of the contents of this thesis.

1.1. Multiple scattering

Multiple scattering occurs in a medium when light that enters the medium gets
scattered by more than one scatterer before exiting the medium [16–18]. The
white color of milk, white paint, clouds is caused by multiple scattering by
wavelength-scale particles. Moreover, the white color indicates that there is no
absorption of visible light in the multiple scattering examples that are provided.

In order to decide whether there is multiple light scattering in a certain medium,
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one needs to know how far the light travels before it undergoes a scattering event
and the length, L of the medium. The mean distance between two scattering
events is known as the “scattering mean free path” ls [19]. So, multiple scatter-
ing occurs when ls < L. In the case of isotropic scattering, the direction of the
incident wave is randomized after traveling a distance ls in a scattering medium.
However, not all scattering events are isotropic, so that the direction of the inci-
dent wave may not be randomized after it traverses a distance ls in the scattering
medium. The length traversed by light, after which the initial direction is ran-
domized is known as the transport mean free path, ltr. For isotropic scattering,

ltr = ls, (1.1)

whereas in general for anisotropic scattering [19],

ltr =
ls

1− ⟨cos θ⟩
. (1.2)

Here, θ is the angle between the wavevector incident to the scatterer and the
wavevector of the scattered light, ⟨.⟩ indicates averaging over all angles, θ. If
the scattering is isotropic ⟨cos θ⟩ = 0. If the scattering is completely in the
forward direction, ⟨cos θ⟩ = 1, in which case the direction of incident light is
never randomized in the medium. The transport mean free path and scattering
mean free path for anisotropic scattering are depicted in Fig 1.1. The light is
shown to undergo many small angle scattering events which occur on average ls
apart. In many cases, this can be viewed as equivalent to a smaller number of
isotropic scattering events that are ltr apart, where ltr > ls. When ls ≤ ltr < L,
light performs a random walk in the scattering medium and is well described by
diffusion theory, apart from the interference effects.

ltr

ls

Figure 1.1.: Scattering and transport mean free path for anisotropic scattering. Blue
solid line: a trajectory scattered over a large angle after each transport
mean free path ltr, red dashed line: a trajectory undergoing small angle
scattering after each scattering mean free path, ls.

1.2. Optical transmission matrices

The relation between fields incident on and transmitted through a random pho-
tonic medium is well-described by a transmission operator. In a mathematical
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description, incident and transmitted fields are represented in certain basis sets.
In turn, the relation between these idealized incident and transmitted fields is
represented by a transmission matrix. Knowledge of the transmission matrix is
of paramount importance in terms of applications as it allows one to manipulate
the transmitted fields through a random photonic medium [20, 21].

Moreover, transmission matrices contain very interesting physics arising from
energy conservation [22]. The light transport can be visualized as taking place
via transmission eigenchannels of a random photonic medium. According to
theory, light transport mostly takes place through a small number of open trans-
mission eigenchannels that completely transmit light, introducing correlations
between the elements of the transmission matrices [22–26]. In order to visual-
ize these correlations, one can think of a randomly generated field incident on
a random photonic medium. In a simplified picture, such a field couples to a
collection of transmission eigenchannels that are either completely transmitting
(open transmission eigenchannels) or completely reflecting (closed transmission
eigenchannels) [26]. Light transmitted through the medium is a linear superpo-
sition of fields transmitted through the open transmission eigenchannels. When
the number of open transmission eigenchannels is small, the transmitted light
has a low degree of freedom as compared to the incident light, showing that the
transmitted fields (likewise, the transmission matrix elements) are correlated. A
simple everyday example can be given using a thick piece of paper. When we
hold this paper and look at the light reflected from it, we see that it looks bright
white. When we hold this paper to light, though, we see that it is dim. Hence,
this paper reflects more light than it transmits. The interesting and counter-
intuitive prediction of the theory is that the low transmission through paper is
not due to many transmission eigenchannels with low transmission but is due to
few transmission eigenchannels with high transmission.

Observing individual open transmission eigenchannels in an optical experiment
was our ultimate goal when we started the study of transmission matrices. How-
ever, it turned out to be very difficult. The difficulties are arising from both ex-
perimental imperfections and the intrinsic difficulties arising from working with
samples having a slab geometry, where it is physically impossible to perfectly
address transmission eigenchannels.

Even though individual open transmission eigenchannels cannot be observed,
we observed correlations between the fields transmitted through strongly scatter-
ing materials, which is indicative of correlations between the transmission matrix
elements. Since we measure partial transmission matrices, we do not expect to
reproduce the theoretical predictions made by assuming a full transmission ma-
trix. However, our experimental results are in agreement with a newly developed
analytical theory for partial transmission matrices [27].

A full transmission matrix can give complete information on light transport
through a random photonic medium. Retrieving complete information from a
partial transmission matrix measurement is possible, but the retrieval process is
very unstable due to reduced signal to noise ratio in an actual experiment [28]. In
recent work by Shi et al., universal mesoscopic transport phenomena were studied
in quasi-1D disordered microwave waveguides by measuring and investigating
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the transmission matrices of these waveguides [29, 30]. In our experiments, we
observed correlations in partial transmission matrices of 3D samples, indicating
that sample information is retained in the measured matrices. We demonstrate
the first ever retrieval of the scattering strength of the sample using optical
transmission matrix measurements.

1.3. Control of light transport through random
photonic media

Since the fields incident on and transmitted through a random photonic medium
are related by the transmission operator of the medium, the transmitted field is
modified if the incident field is modified. In a paper by Freund [31], it was envi-
sioned that this principle can be used to obtain optical elements from scattering
samples. However, active control of the fields incident on the scattering sample
was not proposed in this paper.

Active control of transmitted fields through random photonic media is made
possible by wavefront shaping, as was first demonstrated in our group at the
University of Twente by Vellekoop and Mosk [32]. In the method described in
Ref. [32], a single target outgoing channel is selected and its intensity is used as
a feedback signal to an algorithm that modifies the phase of the fields incident
on the sample. In this way, the intensity in the selected outgoing free mode is
maximized by shaping the incident wavefront.

Knowledge of the partial transmission matrix also allows one to manipulate the
light transport through disordered media. This method was first demonstrated by
Popoff et al. [20]; part of the optical transmission matrix of a disordered sample
was measured and the knowledge of the transmission matrix was used to focus
light behind a disordered medium. This method has been adopted in other work
to send an image through a disordered medium [33], to employ the disordered
medium in order to increase the resolution of an otherwise low resolution imaging
system [34] and enhance the transmission through a disordered system [35]. The
studies mentioned were conducted using monochromatic light. It is possible to
also measure a wavelength dependent transmission matrix and obtain optical or
microwave time reversal [36]. In recent work, optics is merged with acoustics
to measure a photo-acoustic transmission matrix, which can have biomedical
applications [37].

Control of light transport through random photonic media has attracted a lot
of attention both from a fundamental and an application-based point of view and
has become a growing field [14]. Such control eventually allows for a selective
coupling of light to individual open transmission eigenchannels and can enable
experimental study of such channels, experimental studies in this direction are
described in [35, 38]. It can provide control over absorption, emission and random
lasers where there is absorption and gain inside the disordered medium [39–43].
It opens up many prospects for imaging through opaque tissue and with an
extremely high resolution [12, 44, 45]. Merging control over light transport with
acoustics, it is possible to increase the resolution of ultrasound imaging. With
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the active control of fields incident on a disordered medium, it is possible to use
the disordered medium as a reconfigurable optical element. In the recent years,
several optical functionalities have been demonstrated by using disordered media,
including a lens [12, 32], a polarizer [46], a dynamic waveplate [47], a spectral
filter [48] and a beamsplitter [49].

1.4. Outline of this thesis

This thesis is organized as follows:

In Chapter 2, we introduce basic physical concepts that are widely used to
study light transport through random photonic media and are also employed in
the further chapters of this thesis.

In Chapter 3, we present a study where we focus light through a random
photonic medium using binary amplitude modulation. The conventional im-
plementation of wavefront shaping is by modulating the phase of the incident
wavefront. In this chapter, we describe how to perform wavefront shaping by
selectively removing a portion of light incident on the disordered medium. The
method is demonstrated using both a liquid crystal amplitude and phase modu-
lation spatial light modulator as well as using a digital micromirror device inside
a commercial projector. It is the first demonstration of using a MEMS-based
device for focusing light through disordered media. Moreover, by using a com-
mercial projector for wavefront shaping we show that wavefront shaping does not
per se require expensive equipment and in principle can easily be implemented
as a tabletop student experiment.

In Chapter 4, we give a detailed description of the experimental and data
analysis procedure for transmission matrix measurements. In this chapter, we
also provide a detailed analysis of effects of noise on the transmission matrix
experiments.

In Chapter 5, we describe transmission matrix measurements of strongly
scattering random photonic GaP nanowire ensembles. The samples used in this
section are among the strongest scattering materials reported for visible light.
We observe correlations in the measured transmission matrices. Observation of
these correlations is indicative of strong scattering of these materials and indi-
cates that the physical information on light transport through the sample is not
lost. Moreover, we describe a numerical model that we developed to interpret
our findings and which reproduces the experimental results. We also used this
numerical model to estimate the scattering strength of the sample under study.
This is a first successful demonstration of the use of transmission matrices for re-
trieving optical properties of scattering media. The retrieved scattering strength
is found to be consistent with the previously reported parameters.

In Chapter 6, we describe the transmission matrix measurements of strongly
scattering random photonic media of ZnO nanoparticles in air. These samples
are less strongly scattering than samples studied in Chapter 5, however, are still
among the most strongly scattering materials used in the optical wavelength
regime. The samples used in this chapter enable very good optical access and in
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turn enable measurement of a large part of the transmission matrix. Measuring
a large portion of the transmission matrix along with the strong scattering of
ZnO nanoparticle medium makes it possible to observe strong correlations in
the transmission matrices of these samples. In this chapter, we compare our
experimental findings to numerical and analytical models and observe very good
agreement.

In Chapter 7, we report on speckle intensity statistics of waves transmitted
through random photonic media of ZnO nanoparticles in air. The samples are
the same samples as used in Chapter 6. We observed deviations from Rayleigh
statistics. This is a first observation of such deviations in isotropic light-scattering
samples and is indicative of the strong scattering of ZnO nanoparticle layers,
supporting the results of Chapter 6.

In Chapter 8, we provide a summary of the thesis.
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CHAPTER 2

Concepts

In this chapter, we review the main concepts of light transport through disordered
media. The aim is to provide an understanding of key concepts that are used
throughout the thesis. Diffusion theory is described in Section 2.1. Scattering
and transmission matrices and the transmission eigenchannels are introduced in
Section 2.2. Random matrix theory as an approach to light transport through
disordered media is described in Section 2.3. The intensity statistics of the speckle
is described in Section 2.4. In Section 2.5, we describe the concept of photonic
strength and comment on its relation to observing correlations in a transmission
matrix measurement.

2.1. Diffusion

When interference effects are neglected, diffusion theory provides a good de-
scription for light propagation in disordered photonic media for the case where
λ ≪ ltr ≪ L. The diffuse intensity is described by the diffusion equation [1]

∂

∂t
I(r, t) = D∇2I(r, t). (2.1)

Here, I(r, t) is the diffuse intensity and D is the diffusion constant. When the
system is in steady state, the time derivative vanishes and the diffusion equation
becomes Laplace’s equation

D∇2I(r) = 0. (2.2)

We can also include a source function to get Poisson’s equation

D∇2I(r) + S(r) = 0, (2.3)

where S(r) is the source function. Equation 2.3 can be solved for a delta function
source

D∇2g(r, r1) = −δ(r− r1). (2.4)

where g(r, r1) is the Green’s function. Physically, it represents the diffuse inten-
sity at position r caused by a point source at position r1. This solution can be
generalized to an arbitrary source using the superposition principle, yielding [2]

I(r) =

∫
g(r, r1)S(r1)dr1, (2.5)

The integral is taken over all space.
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2.1.1. Slab geometry

A sample with a slab geometry extends effectively to infinity in two transversal
dimensions x and y, and is finite in the longitudinal z-direction. The samples
that are studied in this thesis have a slab geometry. Diffusion in a slab geometry
has been widely studied [1, 3–5], and here we recapitulate the essential physics.

In case of a plane wave that is at normal incidence on a sample with a slab
geometry, the diffusion equation along the z-direction is

D
∂2I(z)

∂z2
+ S(z) = 0. (2.6)

The diffuse source, S(z) can be taken as a planar source located at an injection
depth, zinj = ltr away from the boundary of the slab [3, 6], so that

D
∂2I(z)

∂z2
+ δ(z − zinj) = 0. (2.7)

In order to obtain the solution to the diffusion equation 2.7, we have to impose
boundary conditions. The diffuse source is assumed to be located inside the
sample. In this case, at the front and rear surfaces of the sample, incoming fluxes
are only due to reflections from the interface [7, 8]. Therefore, the generally
adopted boundary conditions are [8]

J+ = RJ− at z = 0

J− = RJ+ at z = L, (2.8)

with J− and J+ the flux in −z and +z directions, respectively. z = 0 and z = L
are the positions of the front and rear surfaces of the sample and R is a mean
reflection coefficient, defined as [8]

R =
3C2 + 2C1

3C2 − 2C1 + 2
, (2.9)

with

C1 ≡
∫ π/2

0

R(θ) sin(θ) cos(θ)dθ, (2.10)

and

C2 ≡
∫ 0

−π/2

R(θ) sin(θ) cos2(θ)dθ. (2.11)

Here, R(θ) is an angle dependent reflection coefficient,

R(θ) =
R⊥(θ) +R∥(θ)

2
, (2.12)

and R⊥(θ), R∥(θ) are the Fresnel reflection coefficients for light perpendicular
and parallel polarized to the plane of incidence, respectively [8, 9].

Using the boundary conditions in Eq. 2.8, the diffuse intensity is found to
extrapolate to zero outside of the sample, at a certain distance away from the
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interface. This distance is known as the extrapolation length ze. In order to
calculate the extrapolation length, one needs to take into account the reflections
occurring at the interface of the sample due to the refractive index mismatch
between the sample and the surroundings [7, 8]. The extrapolation length ze is
equal to

ze =
2

3
ltr

1 +R

1−R
. (2.13)

In the case of a planar source at position zinj, the solution of the diffusion equation
is [1, 5, 10],

I(z) =
1

D


L− zinj + ze2
L+ ze1 + ze2

(z + ze1) , 0 ≤ z ≤ zinj

zinj + ze1
L+ ze1 + ze2

(L+ ze2 − z) , zinj ≤ z ≤ L,

(2.14)

with ze1 and ze2 are the extrapolation lengths on the front and rear sides of
the sample, respectively. The diffuse intensity distribution is shown in Fig. 2.1.
The diffuse intensity is maximum at the location of the source z = zinj and
extrapolates linearly to zero at a distance of extrapolation length away from the
sample.

zinj L0 L+ze2-ze1 z

I(
z
)

Figure 2.1.: Intensity as a function of position in a slab. The planar diffuse source is
at zinj. Physical boundaries of the sample are at z = 0 and z = L.

The total transmission is the transmitted flux normalized by the incident flux
and is given by [10, 11]

⟨T ⟩ = zinj + ze1
L+ ze1 + ze2

. (2.15)

When a plane wave is normally incident on a slab, zinj = ltr. In our experiments,
we focus the incident light on the front surface of the sample. In this case, many
plane waves are incident on the sample, each at an angle θ with the surface
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normal [12] and carrying an equal flux normal to the front surface of the sample.
Each plane wave travels a transport mean free path ltr in the medium before it
becomes diffuse, this corresponds to a distance ltr cos(θ) from the front surface of
the sample, where θ is the angle between the propagation direction of the plane
wave and the normal to the front surface of the sample. Following [3] we find an
effective diffuse source, located at zinj from the front surface of the sample. In
the case that θ varies between 0 and θmax, the injection depth is equal to

zinj =

∫ 2π

0

∫ θmax

0
ltr cos(θ)I cos(θ) sin(θ)dθdϕ∫ 2π

0

∫ θmax

0
I cos(θ) sin(θ)dθdϕ

(2.16)

For θmax = π/2, zinj =
2

3
ltr is found. In an optical experiment, the range of

angles of incidence is limited and θmax is determined by the NA of the objective.
In this thesis, NA=0.95 is used in the transmission matrix experiments of ZnO
nanoparticles in air, giving θmax=1.25 radians. This angle is even smaller inside
the sample due to refraction. The sample consists of two different materials
with different refractive indices. In order to find the refractive index of such a
sample, it can be modeled as an effective medium with an effective refractive
index, neff , which is a function of the refractive indices of the constituent media
and their filling fraction [13]. Modeling the scattering sample by an effective
medium is a good approximation when the sample consists of sub-wavelength
particles. The effective refractive index, neff , of a medium consisting of ZnO
nanoparticles in air is roughly 1.4 [14, 15], giving rise to θmax=0.75 radians in
the sample, and zinj = 0.87ltr. In the case of transmission matrix experiments
performed with the random photonic GaP nanowires we used an objective with
NA=0.6. Assuming neff = 2.25, θmax is found to be 0.27 radians in the sample.
In this case, zinj = 0.97ltr is obtained, which is hardly different from the usual
zinj = ltr.

2.2. Scattering and transmission matrix

Light transport through scattering media can be modeled using a scattering
matrix S that relates fields incident on the sample to the outgoing fields [16](

E−
out

E+
out

)
= S

(
E+

in

E−
in

)
, (2.17)

with S the scattering matrix, E+
in and E−

in the fields in free space incident on the
sample from left and right, respectively and E−

out and E+
out the outgoing fields in

free space on the left and right sides, respectively. The scheme of incident and
transmitted fields is shown for a confined, scattering sample in Fig. 2.2. The
fields are normalized so that the power they carry is given by their modulus
square. Due to the conservation of energy, the S matrix is unitary and due to
reciprocity, it is symmetric.

Without the choice of a basis, the S matrix is a linear operator. It is represented
as a matrix when a basis is chosen. In order to represent the S matrix of a



Scattering and transmission matrix 17
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+

Figure 2.2.: E+
in: field incident on the sample from the left, E+

out: field transmitted
through the sample on the right, E−

in: field incident on the sample from
the right. E−

out: field transmitted through the sample on the left.

waveguide, one may choose the basis as the TE and TM modes of a waveguide
without scatterers. To represent the S matrix for a slab, one can choose the
basis as diffraction limited spots on the surface of the sample or plane waves
with different angles of incidence on the sample [17]. Unlike the situation in a
waveguide, for a slab there is no basis of propagating modes that is both complete
and orthogonal. The S matrix is equal to

S =

(
R−+ T−−

T++ R+−

)
, (2.18)

with R−+ the reflection matrix on the left side of the sample, R+− the reflection
matrix on the right side of the sample, T−− the transmission matrix from right
to the left and T++ the transmission matrix from left to right. In this thesis,
only T++ is considered. From this point on we represent T++ as T and call it
the transmission matrix of our sample. We have

E+
out = TE+

in. (2.19)

Using singular value decomposition, the transmission matrix T can be written
as a product of three matrices [18]

T = UT V †. (2.20)

Here, the matrices U and V † are unitary matrices with complex elements and the
matrix T is a diagonal matrix with real, positive elements. The matrix V † per-
forms a basis transformation between the free modes incident on the sample and
the transmission eigenchannels inside the sample. The elements on the diagonal
of matrix T are the singular values, τ0 of the transmission matrix and represent
the eigenchannel transmission coefficients.1 The distribution of the eigenchannel
transmission coefficients is described using random matrix theory. The matrix U
performs the basis transformation between the transmission eigenchannels and
the outgoing free modes from the sample. Columns of the matrices U and V are
the left and right singular vectors of the matrix T .

1The singular values having the DMPK distribution are denoted τ0 as opposed to the notation
τ used for rest of the singular values in this thesis. τ represents singular values that are

normalized so that
√

⟨τ2⟩ = 1.
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2.3. Random matrix theory

Random matrix theory (RMT) enables the study of complex structures using a
statistical approach. A physical system is modeled using a large and random
matrix, where certain probability distributions of the matrix elements and eigen-
values are assumed due to physical symmetries in the system under study.

The history of RMT is described in detail in many reviews [16, 19–21]. Here,
we provide a short summary. Random matrix theories were first introduced in
mathematical statistics by Wishart in 1928 [22]. RMT started to be used in
physics in 1950s and 1960s and the initial motivation was to explain the spacings
between the energy levels of slow neutron resonances in nuclear reactions [23–
28]. Since then, RMT has been applied to various areas in physics, e.g. level
statistics of small metal particles, quantum chaos, quantum field theory and wave
transport through disordered media [16, 19, 21]. Since 1980s, random matrix
theory has been applied to classical and quantum optics [29]. The systems that
have been studied experimentally include chaotic cavities [30–34] and disordered
media [17, 35, 36].

The distribution of the eigenchannel transmission coefficients through disor-
dered media is described using random matrix theory. This distribution is known
as the Dorokhov-Mello-Pereyra-Kumar (DMPK) distribution and its probability
density is expressed as [16, 37–39]

P (τ20 ) = ⟨τ20 ⟩
1

2τ20
√

1− τ20
. (2.21)

Here, ⟨τ20 ⟩ ≈ l/L is the total transmission through the sample. It is equal to ⟨T ⟩
given by Eq. 2.15.

The probability density function of the eigenchannel intensity transmission
coefficients is shown in Fig. 2.3. This function has two divergencies: at 0 and
1. Since the divergency at 1 is integrable, there is a finite probability of find-
ing transmission eigenchannels close to unity transmission. The divergency at 0
is not integrable, however, the distribution does not start from 0 but it starts
from a minimum transmission coefficient τ20 ≈ cosh−2(L/l). There are a few
transmission eigenchannels with transmission coefficients close to unity. They
are known as open eigenchannels and the transport mainly takes place via these
eigenchannels. Most of the transmission eigenchannels have very low transmission
coefficients. They are mainly reflecting and are known as the closed eigenchan-
nels. The probability of having transmission eigenchannels with intermediate
transmission coefficients is relatively small.

In order to help visualize the correlations induced by the distribution of eigen-
channel transmission coefficients, we present a cartoon in Fig. 2.4. We approxi-
mate the transmission eigenchannels to be either completely transmitting (open
transmission eigenchannels) or completely reflecting (closed transmission eigen-
channels) [40]. In Fig. 2.4, open eigenchannels are represented as simple tubes
with unity transmission. The windows placed before and after the tubes indicate
the matrices U and V that perform the mapping between the bases of incident
and transmitted fields and the transmission eigenchannels of the sample. Each
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Figure 2.3.: Probability density function of τ2
0 as obtained from DMPK theory.

speckle pattern, ckϕk on the right side of the sample represents the field transmit-
ted through the kth open eigenchannel. Each ϕk is determined by the kth column
of the matrix U and each complex number ck is determined by the kth column
of the matrix V along with the incident field Ein. In Fig. 2.4 (a) a sample with
a single open channel is shown. In this case, the transmitted field Eout = c1ϕ1,
independent of the field incident on the sample. On the other hand, if a sample
has multiple (N) open transmission eigenchannels, as shown in Fig. 2.4 (b) the
transmitted fields will be linear superpositions of N independent speckle fields,
Eout = c1ϕ1 + c2ϕ2 + ... + cNϕN . Whatever field is incident on the sample, the
transmitted field can only be a superposition of the fields transmitted through
relatively few open eigenchannels.

The cartoon in Fig. 2.4 is helpful for a visualization of the correlations in-
troduced to the transmitted fields by DMPK distribution. A more accurate
and detailed description of DMPK theory can be found in the review by Carlo
Beenakker [16]. The DMPK theory was originally developed for samples with
a waveguide geometry that are confined in the transversal dimensions. In slab
samples, the transmission eigenchannels are not well-defined as in the case of
waveguide geometry samples. However, the theory by Nazarov [41] and the ex-
perimental results of Vellekoop and Mosk [17] indicate that the DMPK theory
also applies to slab geometry samples.

A limiting case in random matrix theory is the case of complete absence of cor-
relations. For uncorrelated random matrices, one expects to find the singular val-
ues distributed with a probability density known as the Marcenko-Pastur law [42].
This distribution is the limiting singular value distribution when N → ∞ of a
γN by N matrix with independent and identically distributed elements and is
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Figure 2.4.: Cartoon of (a) a sample with a single open channel, (b) a sample with
N open channels. Ein: incident field, Eout: transmitted field, ckϕk: field
transmitted through kth open transmission eigenchannel, tubes: open
transmission eigenchannels, tiled windows: mapping between the incident
and transmitted fields and the transmission eigenchannels of the sample.
Speckle patterns: Orthogonal fields transmitted through the sample.

expressed as [42, 43]

P (τ) =
γ
√
τ2 − τ2min

√
τ2max − τ2

πτ
, (2.22)

with

τmin = 1−
√

1

γ
, (2.23)

and

τmax = 1 +

√
1

γ
. (2.24)

Here, τmin is the minimum singular value, τmax is the maximum singular value
and γ is the aspect ratio, i.e., ratio of the number of rows to the number of
columns of the random uncorrelated matrix. Minimum and maximum singular
values as well as the shape of the distribution are highly dependent on γ. P (τ)
versus τ using γ = 1, 2, 4 and 20 are shown in Fig. 2.5. In the case of γ = 1, the
distribution is also known as the “quarter circle law”, as with appropriate scaling
it has the shape of a quarter circle. As γ increases, the singular value spectrum
becomes narrower and more peaked. In the case when γ → ∞, the spectrum
becomes a delta function centered at 1.

The Marcenko-Pastur distribution is observed in an experiment when a very
small portion of the transmission matrix is measured so that no correlations
can be observed. In order to observe the DMPK distribution experimentally,
one needs to measure the complete transmission matrix, which is not possible
due to experimental limitations. Recently, the intermediate case of measuring a
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Figure 2.5.: Probability density function of τ as obtained from Marcenko-Pastur
theory.

partial transmission matrix, large enough so that its singular value distributions
show deviations from Marcenko-Pastur theory, but small enough so that the
DMPK distribution is not observed has gathered a lot of attention since many
groups around the world have started to measure partial transmission matrices.
This intermediate case has recently been studied theoretically by Goetschy and
Stone [43].

2.4. Speckle statistics

Temporally coherent light transmitted through a disordered medium displays
a speckle pattern consisting of bright and dark regions distributed randomly
throughout the field of view. A speckle pattern in transmission is the linear
superposition of fields transmitted through the open transmission eigenchannels.
The intensity in the speckle pattern has a certain distribution. This distribu-

tion can be deduced by considering the addition of many fields. If these fields are
assumed to be independent of each other, the distribution of real and imaginary
parts of each individual speckle is Gaussian due to the central limit theorem and
the intensity distribution of the speckle has Rayleigh statistics [44]

P (I) =


1

⟨I⟩
e

−I
⟨I⟩ , I ≥ 0

0 otherwise.
(2.25)

However, fields transmitted through a disordered medium are not independent.
There is a subtle correlation between these fields as they are generated by a small
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number of open transmission eigenchannels. These correlations show up in the
intensity statistics of the speckle as a deviation from Rayleigh statistics [45–47].
The distribution of the speckle intensity including the correction for correlations
in the transmission matrix is equal to [47]

P

(
I

⟨I⟩

)
= e(

−I
⟨I⟩ )

{
1 +

1

3g

[(
I

⟨I⟩

)2

− 4

(
I

⟨I⟩

)
+ 2

]}
. (2.26)

Here, g is the dimensionless conductance and in a waveguide geometry it is given
by [1]

g =
∑
a,b

Tab, (2.27)

with Tab the flux transmission coefficient from incident channel a to outgoing
channel b. When g is very large, the distribution given in Eq. 2.26 reduces to the
Rayleigh distribution.

∞

Figure 2.6.: Distribution of the normalized speckle intensity, sab = Tab/⟨Tab⟩ = I/⟨I⟩
from [47].

In Fig. 2.6, the normalized intensity distribution of speckle as obtained from
Eq. 2.26 is shown for g = 2, 4, 8 and ∞. The case of g = ∞ is equivalent
to Rayleigh statistics, showing an exponentially decreasing probability for the
intensity speckle. As g is decreased, the distributions of the speckle intensity
deviate from Rayleigh statistics. The deviation from the Rayleigh statistics is
more prominent for small g as compared to large g. In other words, when there are
few open channels in the system, it is easier to observe deviations from Rayleigh
statistics.
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2.5. Photonic strength

The photonic strength S is a measure to describe how strongly light interacts
with a complex photonic medium. For very high S photonic bandgap behaviour
is expected to occur in periodic media and Anderson localization is expected to
occur in random photonic media [48].
The photonic strength S is defined as the ratio of the polarizability α of an

average scatterer in a complex medium to the average volume per scatterer V [48–
50]

S =
4πα

V
. (2.28)

For periodic media, the photonic strength can be rewritten as [48, 50]

S =
|∆ϵ|
ϵ

|f(∆k)|, (2.29)

where ∆ϵ is the difference in the dielectric constant, ϵ2 − ϵ1 of the constituent
materials in the complex medium, ϵ is the volume-averaged dielectric constant,
and f(∆k) is the medium’s structure factor evaluated at a dominant scattering
vector ∆k. This expression illustrates that a high dielectric contrast is favorable
for strongly photonic media as well as a low average dielectric constant (or average
refractive index).
For random photonic media, the photonic strength is [51]

S =
1

kltr
, (2.30)

where k is the wavevector of light in the medium and ltr is the transport mean
free path. Eq. 2.30 holds for the diffusive regime.
The photonic strength for the samples used in this thesis are in the range 0.13<

S<0.27 for random photonic GaP nanowire ensemble, calculated using previously
reported ltr [52] along with estimated effective refractive index neff values and
0.08<S<0.16 for random photonic ZnO nanoparticle medium, calculated from
previously reported material parameters ltr and neff [14]. Whereas there is not a
clearly defined threshold above which we can call a sample strongly scattering,
S > 0.2 is considered to be a very high photonic strength, indicating very strong
scattering. The photonic strengths calculated for our samples indicate that they
are in this range and hence strongly scattering.
To relate the photonic strength S to the correlations in the transmission matrix

measurements, we now make a simple derivation. We estimate the number of
open transmission eigenchannels in a medium as

Nopen =
2πAn2

eff

λ2

ltr
L
, (2.31)

with L the thickness of the sample and A the area over which the transmission
matrix is measured. We write the number of transmission eigenchannels that can
ideally be excited using a numerical aperture NA as Nin

Nin =
2πA(NA)2

λ2
. (2.32)
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A is the probed area on the sample. In order to observe correlations in the
transmission matrices, we need Nopen < Nin. Rearranging the terms, we get the
condition for observing correlations in the transmission matrix as

S >
λneff

L2π(NA)2
. (2.33)

We see that the condition for observing correlations depend on material properties
ltr and neff of the sample as well as the thickness of the sample and the NA used in
an experiment. This calculation is made assuming a waveguide geometry of the
sample and ignoring diffuse broadening. In this case, L can be made arbitrarily
large to observe correlations in a transmission matrix even for low S. If we include
diffuse broadening,

S >
Ãλneff

AL2π(NA)2
(2.34)

is found, assuming an effective area Ã of the sample. Its width is the algebraic
average of the widths of probed area and the area that the light diffuses to. It is
again seen that the experimental conditions and the sample geometry plays an
important role in observing correlations in a transmission matrix measurement.
A very important conclusion drawn from Eqs. 2.33 and 2.34 is that for large S,
correlations in a transmission matrix can be observed in an experiment with less
strict requirements on the geometry.
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CHAPTER 3

Focusing Light Through Random Photonic Media

By Binary Amplitude Modulation

3.1. Introduction

In many random photonic materials such as paper, paint and biological tissue
light is multiply scattered. As a result, the propagation of light becomes dif-
fuse and the materials appear to be opaque. Nevertheless, it has recently been
demonstrated that it is possible to control light propagation through such sam-
ples by manipulating the incident wavefront [1–9]. An example for controlling
light propagation by wavefront manipulation is optical phase conjugation, where
a field that exits from the strongly scattering sample is phase conjugated and
sent back to retrace its path to reconstruct the intensity pattern of the original
incident field [6–9]. Optical phase conjugation is successful in reconstructing a
field through random photonic media, however, it does not provide a one-way
focusing of light through such samples. First demonstration of one-way focus-
ing of light through [1], or inside [2] strongly scattering materials was achieved
by spatially modifying the phase of the incident light wave pixel by pixel using
an algorithm to compensate for the disorder in the sample. It was shown that
the shape of the focus obtained with this method is independent of experimen-
tal imperfections and has the same size as the speckle correlation function [3].
A related approach to control light propagation by wavefront manipulation was
demonstrated by Popoff and coworkers. They measured part of the optical trans-
mission matrix, and used it to create a focus [4] and reconstruct an image behind
the strongly scattering sample [5]. All of these methods require modulating the
phase of the incident wavefront. Therefore the speed of the utilized phase mod-
ulator becomes a limiting factor on the applicability of the method to materials
whose configuration change rapidly, such as biological samples [7].
Here we introduce a new focusing method based on binary amplitude modula-

tion. The wave incident to the turbid material is spatially divided into a number
of segments. A portion of these segments are selectively turned off. In contrast to
existing wavefront shaping methods, the phase of the segments is not modified.
We demonstrate two implementations of this method to focus light through a
multiply scattering TiO2 sample; one using a liquid crystal on silicon (LC) spa-
tial light modulator (SLM) in amplitude-only modulation mode and the other

This chapter has been published as: D. Akbulut, T. J. Huisman, E. G. van Putten, W. L.
Vos and A. P. Mosk, Opt. Express 19, 4017–4029 (2011)
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using a digital micromirror device (DMD). DMDs consist of millions of mirrors
that can be independently controlled to reflect light either to a desired position
or to a beam dump. This effectively switches light coming from a particular pixel
of the DMD on or off and provides a way to spatially modulate the amplitude
of light in a binary fashion. The advantage of DMDs over LC SLMs lie in their
switching speed. An important figure of merit for switching speed is the settling
time, which is the time required for a pixel to become stable after changing its
state. For a standard DMD the settling time is 18 µs [10], which is approxi-
mately three orders of magnitude faster than that for typical LC SLMs used in
the previous works [1–5, 7–9]. Such fast devices as DMDs have the potential to
create a focus behind turbid material in time scales shorter than required for the
configuration of the sample to change, hence can prove useful for focusing light
through biological tissue [7].

We describe the algorithm that is used to create a focus behind a turbid ma-
terial by selectively turning off the segments of the SLM in Section 3.2. Im-
plementation of the method using an LC SLM is described in Section 3.3. In
this section, we present measurements of the enhancement of intensity inside the
created focus and compare the results to the enhancements expected under ideal
situations. In Section 3.4, we demonstrate focusing light through a turbid ma-
terial using a MEMS-based SLM. In the Appendix, derivation of an analytical
formula for the intensity enhancement from the binary amplitude modulation
algorithm is provided.

3.2. The binary amplitude modulation algorithm

Light transport through a strongly scattering sample can be described using the
concept of a transmission matrix that connects incident and outgoing scattering
channels. Scattering channels are the angular or spatial modes of the propagat-
ing light field [11]. In this chapter, we denote incident and outgoing scattering
channels as input and output channels, respectively. At the back of the sample
the electric field of light at each output channel is related to the electric field of
light at each input channel by the transmission matrix of the sample [12]

Em =
N∑

n=1

tmnEn, (3.1)

where Em is the electric field at the mth output channel; En is the electric field
at the nth input channel; and tmn are the elements of the transmission matrix.

In our experiments a light beam incident to a strongly scattering sample is
spatially divided into a number of square segments. Each segment corresponds
to a specific range of incident angles to the sample. When input channels are
described in terms of angular modes of incident light field, each SLM segment
covers a range of input channels. As the SLM is divided into more segments,
the angular resolution is increased and more input channels are independently
controlled. We image the back surface of the sample with a CCD camera. In
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Figure 3.1.: Graphical explanation of the binary amplitude modulation algorithm. (a-
c) Complex plane representation of the electric field at the target in suc-
cessive steps of the algorithm. Small black vectors represent the electric
field of each input channel as modified by traveling through the sample.
The red vector is the total electric field at the target output channel.
Dashed gray vector represents the electric field at the target position be-
fore optimization. (d-f) Evolution of the amplitude pattern on the SLM.
(a,d) In this step, a segment which contributes negatively to the total
amplitude is identified (circled). This segment will be turned off as al-
gorithm proceeds to next segment. (b,e) Subsequently, other segments
which contribute negatively are identified and will be turned off. (c,f)
At the end of the algorithm, all of the segments which have a negative
contribution to the total electric field at the target are turned off.

this case, each diffraction limited spot corresponds to an output channel. In
the present experiments we select a single target output channel and use the
algorithm to maximize the intensity.

The working principle of the algorithm is illustrated schematically in Fig. 3.1.
In the top panel, we see a vectorial representation of the electric field in the
selected target channel, Em. This electric field is a vectorial sum of electric
fields of all incident channels multiplied by the corresponding transmission matrix
element. With the algorithm all segments of the incident field are successively
probed. Each segment is turned on and off while the intensity at the target output
channel is being monitored. This procedure can be visualized by following the
block arrows in Fig. 3.1 (a-c; d-f). As a result the segments leading to destructive
interference with the resultant electric field are turned off and the intensity at
the target is increased as compared to the unoptimized case. This increase can
be seen by comparing the magnitudes of the red vectors in Fig. 3.1 (a) and Fig.
3.1 (c). The evolution of the amplitude pattern on the SLM can be visualized by
following Fig. 3.1 (d-f).

When the algorithm is complete, a two dimensional binary amplitude pattern is
obtained on SLM; by sending less light to the sample, more light is concentrated
to the position of the focus. This is conceptually similar to focusing light by
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a conventional Fresnel zone plate [13]. In fact, with spatial binary amplitude
modulation, reconfigurable and high degree of freedom Fresnel zone plates are
actively created and utilized to focus light through a strongly scattering material.

3.3. Experiments with a Liquid Crystal Spatial Light
Modulator

The setup used in the experiments is shown in Fig. 3.2. A HeNe laser (wave-
length 632.8 nm, output power 5 mW) is used as the light source. We pass the
beam through a half waveplate and a Glan-Taylor polarizer to obtain vertically
polarized light with adjustable power. The beam is expanded with a 30× beam
expander (not shown) and sent to a polarizing beam splitter cube (PBS). The
vertically polarized light is transmitted through the PBS to fall on the twisted
nematic liquid crystal SLM (Holoeye LC-R 2500). Using the technique described
in Ref. [14], we can turn a segment of the SLM on or off without changing the
phase. Light is projected on to the sample by a 63× 0.95-NA infinity corrected
Zeiss microscope objective. Light transmitted through the sample is collected
with an identical microscope objective, passed through a polarizer and imaged
on to a CCD camera with a 600 mm focal length lens, L3. The effective magnifi-
cation of the imaging system is 229×. The sample is a 36.5±3.1 µm thick layer of
airbrush paint (rutile TiO2 pigment with acrylic medium). The transport mean
free path for similar samples are ltr=0.55±0.1µm at 632.8 nm wavelength [1].

The images captured with the CCD camera before and after the optimization
are shown in Fig. 3.3, along with the amplitude map on the SLM. In this case,
the SLM is divided into 812 segments. Before the optimization all segments are
on and the transmitted intensity pattern is random speckle, Fig. 3.3 (a, b). After
the optimization about half of the segments are off and the transmitted intensity
pattern is dominated by a single bright spot in the position of target output
channel, Fig. 3.3 (c, d). This demonstrates that using spatial binary amplitude
modulation, light can be effectively focused behind a multiply scattering medium.

To have a quantitative measure of the contrast between the bright optimized
spot and the background, the intensity enhancement η is defined as

η ≡ Iopt
Iref

, (3.2)

where Iopt is the optimized intensity inside the target area after spatial binary
amplitude modulation is performed for a specific sample and Iref is the reference
intensity. To measure a suitable reference intensity, the wavefront that is shaped
to give a bright focus at target is sent to different parts of the sample. The
intensities measured in target with changing sample configuration are ensemble
averaged to give Iref . The enhancement we obtain with this definition gives a
measure of the contrast between the focus and the background of the image since
the reference intensity is approximately the same as the average background
intensity. Since nearly half of the segments on the SLM are turned off in the
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Figure 3.2.: Experimental setup. A HeNe laser beam with a wavelength of 632.8
nm and output power of 5 mW is expanded and passed through a half
waveplate (λ/2 WP), a polarizer (pol.1) and a polarizing beam splitter
(PBS) to be reflected off a Holoeye LC-R 2500 liquid crystal spatial light
modulator (SLM). Phase and amplitude modulation is decoupled [14]. A
high NA (NA=0.95) microscope objective projects the shaped wavefront
on the sample and an identical microscope objective collects the light
transmitted through the sample. The transmitted intensity pattern is
passed through a polarizer (pol.2) and monitored with a CCD camera.
The computer (PC) receives intensity pattern from the CCD and adjusts
the SLM segments according to the algorithm. L1, 250 mm focal length
lens. D, aperture. L2, 150 mm focal length lens. M, mirror. L3, 600 mm
focal length lens.

optimized wavefront, the reference intensity is approximately half of the ensemble
averaged intensity when all segments are on.

In Fig. 3.4 we show the measured enhancement values as well as the ideally
expected enhancement values, using Eq. 3.3. We measured the enhancements
for a wide range of segments. The enhancement increases as the SLM is divided
into more segments since the number of independently controlled input channels
increases. The ideal enhancement ηideal increases linearly with the number of
controlled input channels N as

⟨ηideal⟩ ≈ 1 +
1

π

(
N

2
− 1

)
. (3.3)

However, deviations from the ideal conditions reduce the intensity enhancement.
We have derived (see Appendix) that the intensity enhancement in presence of
intensity noise ⟨ηnon−ideal⟩ can be written as

⟨ηnon−ideal⟩ = ⟨ηideal⟩
(
1

2
+

1

π
arctan

(
SNR√

N

))
⟨A⟩2

⟨A2⟩
, (3.4)
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Figure 3.3.: Experimental results of the optimization procedure. (a) Amplitude map
written on the SLM before optimization. Active area of the SLM is
divided into 812 segments, all of which are on. (b) Image captured by the
CCD before optimization is performed. (c) Amplitude map on the SLM
after the optimization procedure is complete. (d) Image captured after
the optimization is complete. A single bright spot appears on the target
point. Note the different color scale between (b) and (d).

where SNR represents the signal to noise ratio of the signal at target position,
and ⟨A⟩2/⟨A2⟩ is a factor introduced to account for non-uniform illumination of
the SLM, with A representing the amplitude of field reflected from each SLM
segment. When the illumination pattern of the SLM is investigated, ⟨A⟩2/⟨A2⟩
is found to be 0.97±0.01. The derivation of Eq. 3.3 and Eq. 3.4 can be found in
the Appendix. The experimental data are fitted to Eq. 3.4 using the signal to
noise ratio (SNR) as the only adjustable parameter. The value of the adjusted
SNR is found to be 24. From a test performed on the experimental setup with
a static binary amplitude pattern on the SLM, the intensity fluctuations of the
light incident to the sample was measured and found to have an SNR of 165. The
fact that the adjusted SNR has a lower value than measured SNR can be caused
by several reasons: in the experiments the state of each segment is updated
continuously during an optimization, increasing the rate of wrong decisions as
the optimization proceeds. However, Eq. 3.4 assumes that the probability of
making a wrong decision for the state of a segment is constant throughout the
optimization process. Moreover, Eq. 3.4 takes only intensity noise into account,
which is an incomplete description of possible sources of noise or instabilities in
the experimental setup. Further investigation of effects of noise and instabilities
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Figure 3.4.: Intensity enhancement at the target position versus the number of seg-
ments on the SLM. Black solid line: enhancements expected under ideal
conditions, as obtained from Eq. 3.3. Each data point (black circles) is
an ensemble average of 14-25 data points obtained from measurements.
Bars represent the standard error of each measurement set. Black dotted
curve: fit performed for the experimental enhancements using Eq. 3.4
with a single free parameter, SNR. Best curve fit yields SNR=24.

on the performance of the presented algorithm is beyond the scope of this chapter.

Although the implemented algorithm was found to be sensitive to environmen-
tal factors, our experimental data convincingly shows that light can be focused
through turbid materials using spatial binary amplitude modulation. In our ex-
periments, light intensity at the target position was found to be enhanced up to
75±6 times the average speckle intensity in the background.

3.4. Experiments with a Micro Electro-Mechanical
System Based Spatial Light Modulator

Spatial binary amplitude modulation enables the application of MEMS-based de-
vices such as the digital micromirror devices in wavefront shaping experiments.
In this section, we describe demonstration of focusing of light through a turbid
medium using a MEMS-based SLM to modulate the wavefront. To our knowl-
edge this demonstration is the first MEMS based focusing through turbid media.
The SLM that is employed in the experiments described in this section is a disas-
sembled projector (Sharp multimedia projector XR-32X-L), containing a digital
micromirror device from Texas Instruments.

The setup used in the MEMS based focusing experiments is shown in Fig. 3.5.
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Figure 3.5.: Experimental setup for MEMS-based focusing. A HeNe laser beam that
has a wavelength of 632.8 nm and output power of 2 mW is expanded and
used to illuminate the SLM via a mirror (M). L1, L2 and L3 are planocon-
vex lenses with respectively 150 mm, 50 mm and 50 mm focal lengths.
D is an aperture used for spatial filtering, and NA 0.25 is a microscope
objective having 10× magnification and 0.25 numerical aperture. Light
exiting the sample is converted to far field with L3, passed through a
polarizer, pol. and projected on a CCD camera, which is connected to
the SLM via a PC.

A HeNe laser, which has a wavelength of 632.8 nm and an output power of 2 mW
is used as the light source. The beam is expanded with a 10× beam expander
(not shown) and sent to the digital micromirror device (DMD) based SLM. The
DMD consists of 1024×768 square mirrors each having a size of 10.91×10.91 µm.
Each mirror can exhibit two angles; it either reflects light to the intended target
or into a light dump [10]. Light reflected from the DMD is projected onto the
sample by a 10× 0.25 NA microscope objective and light transmitted through
the sample is passed through a polarizer and projected on the CCD camera with
a 50 mm focal length lens. The sample that is used in the experiments described
in this section is 18.5±2.4 µm thick layer of airbrush paint (rutile TiO2 pigment
with acrylic medium). The transport mean free path for similar samples are
ltr=0.55±0.1µm at a wavelength of 632.8 nm [1].

The images captured with the CCD camera before and after the optimization
are shown in Fig. 3.6. We successfully focused light through a layer of paint using
a MEMS based device. The intensity enhancement is defined here as the ratio
of the average intensity inside the bright optimized spot to the average intensity
outside the spot, and the highest intensity enhancement that could be obtained
with the setup in Fig. 3.5 was found to be 19. However, an ideal enhancement
of 514 is expected from Eq. 3.3. The low enhancements are thought to be the
consequence of the DMD being embedded into a commercial display projector,
introducing undesirable features for our purpose. Such features include turning
off of the pixels of the DMD with a predefined timing, which we could not control.
Lack of mechanical damping or control of noise sources in the setup is proposed
to be another reason for obtaining a reduced enhancement in our experiments.

The DMDs are known to have very fast switching between on and off states



Conclusion 37

In
te

n
s
ity

(c
o
u
n
ts

/m
s
e
c
)

0

0.4

0.8

1.2

1.6

2

(b)(a)

Figure 3.6.: (a) Image of an area of 121 by 121 pixels of the camera is presented
just before the optimization process. (b) The same area is presented
after the optimization process was finished. An enhancement of 18× is
seen. In both figures, the intensity is measured in counts/milliseconds and
presented on the same scale. The SLM is divided into 3228 segments.

and a settling time of 18 µs [10]. In our experiments, the optimizations using a
DMD chip was achieved in a time scale of several minutes, which is similar to
time scales of optimizations performed using the LC SLMs. This effect is due
to addressing the device via the video card of the PC, which was performed in
the same manner for both SLMs, limiting the communication speed to 60 Hz.
With faster control of the DMD devices and use of faster cameras for detection,
the speed of the method will increase close to three orders of magnitude and the
method will be useful for focusing through materials whose configuration change
in short time scales, like biological tissue and can be used for medical imaging
purposes.

3.5. Conclusion

We have demonstrated focusing of light through strongly scattering materials
by spatially modulating the amplitude of the incident field. From experiments,
we have obtained an enhancement of 75 of the target intensity, when the inci-
dent wavefront is divided into 812 independently controlled segments. We have
also implemented the method using a commercial projector that has a MEMS-
based digital micromirror device as the spatial light modulator, providing the
first demonstration of MEMS-based focusing of light through turbid materials.
Use of MEMS technology will enable a fast and versatile way to control light
through turbid materials.
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3.A. Analytical Expression for Ideal Intensity
Enhancement

When no optimization is performed in the system a plane wave is sent to the
sample and the amplitude A and phase ϕ of the electric field En in input channel
n is equal to

En = Aeiϕ. (3.5)

Since the phase of incident field is assumed to be constant for an unoptimized
wavefront, it can as well be taken as ϕ=0, so that En = A when no optimization
is performed and En is either 0 or A after optimization is complete.

For a multiple scattering sample, phases of the transmission matrix elements,
arg(tmn) have a uniform distribution between −π and π [12]. The amplitudes of
the transmission matrix elements, |tmn|, on the other hand are approximated by
a Rayleigh probability density function.1 The electric field at the target output
channel is a vectorial sum of random phasors

Em =

N∑
n=1

|tmn|eiarg(tmn)En. (3.6)

Reference light intensity at the target position is the ensemble average of inten-
sities recorded in the target for different sample configurations

Iref = ⟨E∗
mEm⟩, (3.7)

Iref = ⟨
N ′∑
k

A|tmk|e−i(arg(tmk))
N ′∑
n

A|tmn|ei(arg(tmn))⟩, (3.8)

the same wavefront is assumed to be sent to the sample while both the inten-
sity inside the focus and the reference intensity are calculated, so that N ′ is the
number of segments that remain on after the optimization procedure is finished.
It is important to emphasize that the wavefront is optimized for a certain con-
figuration of the sample and is effectively a randomly shaped wavefront for a
different configuration of the sample. So, while Iref is calculated, light coming
from different input channels have random phases at the target position. In this
case we assume that the phase of each vector constituting Em is drawn from a
distribution that is uniform between −π and π. Using this assumption and the
fact that the transmission matrix elements and the incident field are statistically
independent, the reference intensity can be written as

Iref = N ′⟨t2⟩⟨A2⟩, (3.9)

where the modulus of a transmission matrix element, t is a random variable
having a Rayleigh probability density function.

1For the sake of simplicity, subtle correlations between the transmission matrix elements are
ignored in this chapter.
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If light fields interfere constructively at a certain position, a bright field will
be obtained at that position. For this purpose, we probe the projection of the
field coming from various input channels on the resultant electric field. The
algorithm decides whether a segment shall be on after comparing the intensities
at the target for the segment being on and segment being off cases. A segment
is kept on if it contributes positively to the intensity at the target position. The
contribution of the kth segment to the target intensity, ∆Ik is

∆Ik = |Em|2 − |Em − Ektmk|2. (3.10)

Since ∆Ik is a sum of uncorrelated random variables, it has a Gaussian distribu-
tion due to the Central Limit Theorem. Therefore the number of segments that
remain on after the optimization is determined by the probability of drawing a
positive random variable from the distribution

f(∆̃Ik) =
1

σ
√
2π

e−
(∆̃Ik−µ)2

2σ2 , (3.11)

where ∆̃Ik is a random variable representing ∆Ik. This distribution has a mean
value of

µ = A2⟨t2⟩, (3.12)

and a standard deviation of

σ =
√
⟨t4A4⟩+ (2N − 3)⟨t2A2⟩2. (3.13)

The number of segments that are on after the optimization is

N ′ = NP (x > 0) =

∫ ∞

0

N

σ
√
2π

e−
(x−µ)2

2σ2 dx, (3.14)

=
N

2
erfc

(
−µ

σ
√
2

)
. (3.15)

We assume that the phases of the segments that remain on are uniformly dis-
tributed between (−π/2, π/2) after the optimization, so we have

⟨Iopt⟩ = ⟨E∗
mEm⟩, (3.16)

= N ′⟨A2t2⟩+N ′(N ′ − 1)⟨At⟩2 4

π2
. (3.17)

Under ideal conditions, i.e. when noise and instabilities are ignored, the ensemble
averaged intensity enhancement at the target position, ⟨ηideal⟩ is found to be

⟨ηideal⟩ =
⟨Iopt⟩
⟨Iref⟩

= 1 +
1

π
(N ′ − 1). (3.18)

When the number of controlled input channels is large, ⟨ηideal⟩ becomes

⟨ηideal⟩ ≈ 1 +
1

π

(
N

2
− 1

)
. (3.19)
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A factor of π2/2 more intensity enhancement can be obtained from phase modu-
lation [1]. This is expected since with phase shaping method, all En are actively
assigned a phase leading to total constructive interference at the target while with
binary amplitude shaping active modification of the phases is not performed. The
remarkable fact that the enhancement from a 1-bit modulation method can be
comparable to a full analog phase modulation has been observed previously in
the context of one-channel acoustic time-reversal experiments [15].

In deriving Eq. 3.19 the amplitude of the fields in all input channels were as-
sumed to be the same. However, in our experiments, a Gaussian beam impinges
on the SLM and the amplitude of each input channel’s field is modified accord-
ingly. This introduces a prefactor of ⟨A⟩2/⟨A2⟩ to the theoretically expected
enhancement [16]. In the experiments described in Section 3, this prefactor is
found to have a value of 0.97±0.01.

3.B. Analytical Expression for Intensity
Enhancement Under Intensity Noise

We now proceed to include the effect of noise on the intensity enhancement. We
take into account noise due to intensity fluctuations of the incident light to the
sample. Noise affects the correctness of the decision on whether to keep each
segment of the SLM on or off. Under noisy conditions Pwrong is the probability
for the algorithm to make a wrong decision for the state of a single segment, i.e.,
keeping it on while it should be turned off and vice versa. This probability is

Pwrong = P (∆Ik > 0
∧

∆Iexpk < 0) + P (∆Ik < 0
∧

∆Iexpk > 0), (3.20)

where ∆Iexpk is the experimentally measured difference between the target in-

tensities for on and off states of the kth segment and ∆Ik is the ideal difference
between the target intensities for on and off states of the kth segment. P (∆Ik >

0
∧

∆Iexpk < 0) is the probability of experimentally measuring a negative ∆Iexpk

while under ideal conditions, ∆Ik is positive. Likewise, P (∆Ik < 0
∧

∆Iexpk > 0)

is the probability of experimentally measuring a positive ∆Iexpk while under ideal
conditions ∆Ik is negative.

Pwrong =

∫ ∞

0

f(∆̃Ik)

∫ 0

−∞
f(∆̃Iexpk )d∆̃Iexpk d∆̃Ik+

∫ 0

−∞
f(∆̃Ik)

∫ ∞

0

f(∆̃Iexpk )d∆̃Iexpk d∆̃Ik.

(3.21)

Here ∆̃Ik is a random variable representing ∆Ik and has the probability density

function as given in Eq. 3.11. Similarly, ∆̃Iexpk is a random variable representing
∆Iexpk and has the probability density function

f(∆̃Iexpk ) =
1

(
√
2)σnoise

√
2π

e
−

(∆̃I
exp
k

−∆Ik)2

4σ2
noise , (3.22)
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Figure 3.7.: Numerically simulated intensity enhancement at the target position ver-
sus the number of segments that the SLM is divided into. Each data
point represented by the black circles is an ensemble average of a set of
data points obtained from simulations conducted with an intensity noise
of SNR=165. Bars represent the standard error of each measurement
set. The dashed line shows the enhancements obtained from Eq. 3.25,
assuming ⟨A⟩2/⟨A2⟩ = 1 and using Eq. 3.19.

with ∆̃Iexpk having a mean of ∆Ik and a standard deviation of
√
2σnoise, where

σnoise is the standard deviation for noise. Thus, Pwrong can be evaluated as

Pwrong =
1

2
− 1

π
arctan

(
σ√

2σnoise

)
. (3.23)

From Eq. 3.13, it is reasonable to assume that σ =
√
2N⟨A2t2⟩ for large N. σnoise

can be written as σnoise = ⟨Im⟩/SNR = N⟨A2t2⟩/SNR. Substituting σ and
σnoise in Eq. 3.23, we obtain

Pwrong =
1

2
− 1

π
arctan

(
SNR√

N

)
. (3.24)

The possibility of making wrong decisions for a segment leads to observation of
a reduced intensity enhancement as compared to the ideal case. Using Eq. 3.24,
and the prefactor of ⟨A⟩2/⟨A2⟩, the intensity enhancement at target position
including the effects of noise and a Gaussian illumination profile, ⟨ηnon−ideal⟩ is
given by

⟨ηnon−ideal⟩ = ⟨ηideal⟩(1− Pwrong)
⟨A⟩2

⟨A2⟩
,

= ⟨ηideal⟩
(
1

2
+

1

π
arctan

(
SNR√

N

))
⟨A⟩2

⟨A2⟩
. (3.25)



42 Bibliography

In Fig. 3.7 we show the enhancements obtained from Eq. 3.25 along with the
enhancements obtained from simulations for a case where incident light fluctu-
ates with SNR=165. Only intensity noise is considered in the simulations, with
SNR being kept constant and the fluctuations in the signal being increased with
increased signal intensity. Other sources of noise or instabilities, for instance,
detection noise in the CCD or drifts of the sample relative to illumination and
detection optics are neglected. It can be seen from Fig. 3.7 that as N increases
the enhancements obtained from the simulations become lower than the enhance-
ments expected from Eq. 3.25. We attribute this observation to the fact that the
optimal state for each segment is directly applied to the segment as the sim-
ulation progresses (as is the case for the experiments) instead of being stored
in a separate place to be updated in the end of the simulation. Updating the
state of the segments as the simulation progresses leads to an increase in the
target intensity, which in turn, leads to an increase in the amplitude of intensity
fluctuations in the target. This dynamic increase of the error probability is not
taken into account in the derivation of Eq. 3.25. For large N, the increase in
the target intensity during the simulation is larger, therefore the amount of noise
considered in the simulation and the analytical expression is more different as
compared to small N, leading to a more prominent deviation between the simula-
tion and the analytical expression for large N. Further investigation of the effects
of noise on the quality of obtained foci is beyond the scope of this chapter and
is an interesting subject for further studies.

Bibliography

[1] I. M. Vellekoop and A. P. Mosk, Focusing coherent light through opaque
strongly scattering media, Opt. Lett. 32, 2309 (2007). — p.29, 30, 32, 36,
40.

[2] I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, Demixing
light paths inside disordered metamaterials, Opt. Express 16, 67 (2008). —
p.29, 30.

[3] I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, Exploiting disorder for perfect
focusing, Nat. Photon. 4, 320 (2010). — p.29, 30.

[4] S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S.
Gigan, Measuring the transmission matrix in optics: An approach to the
study and control of light propagation in disordered media, Phys. Rev. Lett.
104, 100601 (2010). — p.29, 30.

[5] S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, Image trans-
mission through an opaque material, Nat. Commun. 1, 1 (2010). — p.29,
30.

[6] Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, Optical phase conjugation
for turbidity suppression in biological samples, Nat. Photon. 2, 110 (2008).
— p.29.

[7] M. Cui, E. J. McDowell, and C. Yang, An in vivo study of turbidity suppres-



Bibliography 43

sion by optical phase conjugation (TSOPC) on rabbit ear, Opt. Express 18,
25 (2010). — p.29, 30.

[8] M. Cui and C. Yang, Implementation of a digital optical phase conjugation
system and its application to study the robustness of turbidity suppression
by phase conjugation, Opt. Express 18, 3444 (2010). — p.29, 30.

[9] C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, Imaging through
turbid layers by scanning the phase conjugated second harmonic radiation
from a nanoparticle, Opt. Express 18, 20723 (2010). — p.29, 30.

[10] D. Dudley, W. Duncan, and J. Slaughter, Emerging digital micromirror de-
vice (DMD) applications, Proceedings SPIE 4985, 14 (2003). — p.30, 36,
37.

[11] C. W. J. Beenakker, Random-matrix theory of quantum transport, Rev. Mod.
Phys. 69, 731 (1997). — p.30.

[12] J. W. Goodman, Statistical optics (Wiley, New York, 2000). — p.30, 38.
[13] M. Born and E. Wolf, Principles of optics (Cambridge University Press,

2003). — p.32.
[14] E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, Spatial amplitude and

phase modulation using commercial twisted nematic LCDs, Appl. Opt. 47,
2076 (2008). — p.32, 33.

[15] A. Derode, A. Tourin, and M. Fink, Ultrasonic pulse compression with one-
bit time reversal through multiple scattering, Journal of Applied Physics 85,
6343 (1999). — p.40.

[16] F. van Beijnum, Light takes no shortcuts, Master’s thesis, University of
Twente, 2009. — p.40.





CHAPTER 4

Experimental Methods

4.1. Introduction

In this chapter we describe in detail the apparatus, the experimental procedures,
and the data analysis procedures for transmission matrix measurements. We also
discuss sources of noise in transmission matrix measurements and how they affect
the results.
A transmission operator describes the relation between the fields incident to

and transmitted through the sample. A transmission matrix is a matrix repre-
sentation of this transmission operator in a pre-chosen basis. In an experiment,
a matrix T̃ is measured, consisting of fields transmitted through the sample in
response to the incident fields generated from a pre-determined basis set. The
matrix T̃ is not exactly the same as the transmission matrix of the sample T ,
since it is modified by the response of the optical setup and the substrate of the
sample. By measuring the response matrix of a blank substrate we correct for
the difference between the recorded matrix T̃ and the transmission matrix of the
sample T in a numerical model1 that we developed to interpret our measure-
ments.
The experimental apparatus consisting of the field generation module and the

field detection module is described in Section 4.2. The data analysis procedure
is described in Section 4.3, including a discussion on the sources of noise in our
measurements and their effect on the singular values of measured transmission
matrices.

4.2. Experimental apparatus

In a very broad sense, a setup for transmission matrix measurements needs two
main parts: a field generation module and a field detection module. The sample
of interest is placed in between these two main modules.
The experimental setup constructed for transmission matrix measurements is

shown in Fig. 4.1. A HeNe laser is used as a monochromatic light source with a
wavelength λ = 632.8 nm. The laser output beam is expanded 20× in diameter
in order to overfill the SLM without getting cropped by the optics in the setup,
and is collimated. The expanded beam is divided into two arms; light in one arm
is sent to the field generation module and light in the other arm is sent to the

1The numerical model is described in detail in Chapter 5.
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Figure 4.1.: Experimental setup for transmission matrix measurements. The field
generation and field detection modules are designated by separate boxes
(dashed lines). HeNe: laser. BS: 50:50 beam splitter. SLM: phase-only
spatial light modulator. HWP: half-wave plate. P: polarizer. CCD:
camera sensor.

field detection module as a reference beam. Wavefronts generated by the field
generation module are incident on the sample. Outgoing wavefronts from the
sample are relayed to the field detection module by a microscope objective and
a lens, with a calculated magnification of 167×.

4.2.1. Field generation

In a transmission matrix measurement, first the basis of choice is determined.
In our experiments, we study transmission matrices using monochromatic light.
Therefore, we only have spatial degrees of freedom for the generated and detected
fields. Fields are spatially manipulated using a spatial light modulator (SLM). A
SLM is a pixelated device that has on the order of a million pixels, each of which
can be modified -in principle- independently in order to modify the field that
is transmitted through or reflected from the SLM. These devices are commonly
used in projectors [1] and have been widely used in the fields of microscopy and
wavefront shaping, for reviews, see references [2, 3] and the references therein.

The SLM is a Holoeye Pluto phase-only liquid crystal SLM with 1920 by 1080
pixels. Depending on the applied voltage, each pixel can apply a phase shift
between 0-2π to the field that is reflected from it. In the experiments described
in Chapters 5 and 6, the SLM pixels were grouped together into segments of 3
by 3 and 2 by 2 pixels, respectively.

In our experiments, we choose to define the transversal modes of the incident
and outgoing fields in a real space basis. In this case, we can describe these
modes as diffraction limited spots on the front surface of the sample, which
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form an overcomplete basis, as is described in Section 4.3. In our experimental
setup, the SLM and the front surface of the sample are in each other’s Fourier
planes. In order to obtain a single focus at the center of the area of interest
on the front surface of the sample, a flat phase profile is written on the SLM.
During transmission matrix recording, this single focus is scanned over the area
of interest on the front surface of the sample by applying phase gradients on the
SLM.

4.2.2. Field detection

In the optical regime, because of the high temporal frequency of the field, it is
not possible to obtain the spatial phase distribution of a wavefront directly, we
need to use techniques like interferometry or for simple beam profiles, wavefront
sensors. In our experiments, we use a new method that we developed, based on
off-axis holographic detection. Off-axis holography was first proposed by Leith
and Upatnieks [4]. Its digital implementation for field detection was proposed by
Takeda [5], and has been widely used since then [6–11]. We base our wavefront
detection on this method because it is an interferometric detection method that
requires a single recorded image and therefore insensitive to laser intensity fluc-
tuations. To record the interference pattern of the signal and reference beams,
an AVT Dolphin 145B CCD camera with 1392 by 1040 pixels of size 6.45 µm
by 6.45 µm is utilized. The images are recorded with 12 bit resolution analog to
digital conversion and are analyzed using Matlab to retrieve the signal field from
the interference pattern. The procedure of retrieving the signal field is described
in Sections 4.2.2.1 and 4.2.2.2.

4.2.2.1. Off-axis holographic detection

Off-axis holographic methods rely on the interference of a signal beam with a
reference beam where the signal beam’s propagation direction makes a 90◦ angle
with the sensor plane and the reference is tilted by an angle θ with respect
to the signal beam. This tilt between the two beams introduces an additional
spatial carrier frequency on top of the interference pattern between the signal
and reference beams. We denote the field in the signal arm as Es and the field
in the reference arm as Er. In the CCD sensor plane,

Es(x, y) = |Es(x, y)|eiϕs(x,y), (4.1)

Er(x, y) = |Er(x, y)|eiϕr(x,y)−i2πqx−i2πqy. (4.2)

Here q = sin(θ)/λ is the phase gradient attained due to tilt on top of ϕr(x, y).
2

Now, we set the reference phase, ϕr(x, y) = 0 and assume that the phase gradients

2A small modification in ϕr(x, y) attained due to propagation into the tilted plane is neglected.
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Figure 4.2.: (a) Interference between the signal and the reference over the full field of
view of CCD. (b) Zoom-in on part of the interference pattern shown in
(a).

in x and y directions are the same. The recorded intensity is then equal to

I(x, y) =|Er(x, y) + Es(x, y)|2 (4.3a)

=|Er(x, y)|2 + |Es(x, y)|2

+ |Es(x, y)Er(x, y)|ei(ϕs(x,y)+2πqx+2πqy)

+ |Es(x, y)Er(x, y)|ei(−ϕs(x,y)−2πqx−2πqy) (4.3b)

=a(x, y) + c(x, y)ei(2πqx+2πqy) + c∗(x, y)ei(−2πqx−2πqy). (4.3c)

The terms giving rise to the intensity pattern can be grouped into two:
(i) The background or dc term which is the sum of the intensity patterns of signal
and reference

a(x, y) ≡ |Er(x, y)|2 + |Es(x, y)|2. (4.4)

This term contains no interference.
(ii) The terms that contain the phase information

c(x, y)ei(2πqx+2πqy) ≡ |Es(x, y)Er(x, y)|eiϕs(x,y)ei(2πqx+2πqy) (4.5a)

c∗(x, y)ei(−2πqx−2πqy) ≡ |Es(x, y)Er(x, y)|e−iϕs(x,y)ei(−2πqx−2πqy). (4.5b)

In Fig. 4.2, a captured interference pattern is shown, as given in Eq. 4.3a to
4.3c. When this pattern is investigated closely, distorted diagonal fringes are
noticed. The tilt between the reference and signal beams gives rise to these
fringes. Their distortion is due to the complicated phase pattern of the speckle
field, with a possible contribution from non-smooth phase pattern of the reference
beam. When two plane waves are interfered, we observe only diagonal stripes
when a tilt is introduced between the beams.

To retrieve the phase information of the signal and the reference beams from
the interference pattern in a single shot, we need to separate the terms c(x, y) or
c∗(x, y) from the term a(x, y). This can be achieved in momentum space since
the terms c(x, y) and c∗(x, y) have a phase gradient that corresponds to a spatial
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Figure 4.3.: (a) Modulus of the Fourier transform of the interference between the
signal and the reference. (b) Modulus and (c) phase of the field in the
+1st order region enclosed by the white square shown in (a).

carrier frequency q. When we take the Fourier transform of the expression 4.3c,
we have

Ĩ(kx, ky) = A(kx, ky) + C(kx − q, ky − q) + C∗(−kx − q,−ky − q), (4.6)

with

A(kx, ky) ≡ F {a(x, y)} , (4.7a)

C(kx, ky) ≡ F {c(x, y)} , (4.7b)

C∗(−kx,−ky) ≡ F {c∗(x, y)} . (4.7c)

The momentum space map of |Ĩ(kx, ky)| is shown in Fig. 4.3 (a). Three distinct
regions are visible in this figure. The region centered at (kx, ky) = (0, 0) is
A(kx, ky), Eq. 4.7a, which is the sum of the signal and the reference intensities
in momentum space. The terms |C(kx − q, ky − q)| and |C∗(−kx − q,−ky − q)|
are centered at spatial frequencies k = ±q with C(kx, ky) and C∗(−kx,−ky)
expressed by Eq. 4.7b and Eq. 4.7c respectively. A zoom-in of the modulus of
the field |C(kx − q, ky − q)| located at the region on top left is shown in Fig. 4.3
(b) and the corresponding phase is shown in Fig. 4.3 (c).3

Now we filter C(kx − q, ky − q) and translate it in momentum space so that it
is centered at (kx, ky) = 0, i.e. we set the spatial carrier frequency q to 0. Later,
we take its inverse Fourier transform to get

c(x, y) = |Es(x, y)Er(x, y)|eiϕs(x,y). (4.8)

If the reference beam has a flat amplitude and phase profile, i.e., Er(x, y) = 1
then c(x, y) gives directly the complex amplitude profile of the signal beam.

4.2.2.2. Field detection procedure

Until now, we have explained the well-known off-axis holographic field detection
method partially following Ref. [11] and demonstrating main steps with figures

3As will be explained in Section 4.2.2.2, the fields shown in Fig. 4.3 are slightly different than
ideal |Ĩ(kx, ky)|, until then we ignore this difference.
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captured in our setup. In conventional off-axis holography methods, the reference
field must have a constant amplitude to permit accurate retrieval of the signal
amplitude using the 1st or −1st order region as shown in Fig. 4.3 (b) and (c).
Inspired by the work of Popoff et al. [12], who used a speckled reference, we have
developed a new method to retrieve amplitude information in off-axis holography
even if the reference amplitude is not constant along its beam profile.

While the beating term between the signal and the reference is ideally given
by Eq. 4.8, in an experiment, the fringe visibility of the spatial carrier is reduced
due to the modulation transfer function of the detection system. The modulus
of the measured beating term c̃ becomes

|c̃(x, y)| = M |c(x, y)| (4.9)

= M |Es(x, y)||Er(x, y)|. (4.10)

Here M represents the modulation transfer function of the detection system in
the 1st order region, which is assumed to be constant. The modulation transfer
function reduces with increased spatial frequency and expresses the fact that
fast spatial modulations (high spatial frequencies k) are imaged with a reduced
contrast due to effects such as the size and shape of camera pixels [13, 14]. In
order to keep a high value of the modulation transfer function, the tilt angle
between the signal and the reference is chosen to be smaller than the maximum
(see Fig. 4.3) so that ±1st order regions are centered at small spatial frequencies
in momentum space. Besides this, care is taken so that the 0th and ±1st order
regions in the momentum space picture of the interference pattern do not overlap.

When Er(x, y) ̸= 1, c(x, y) ̸= Es(x, y). In this case, by combining the mea-
surements of the function a(x, y) and c(x, y), we obtain from their suitable linear
combination

a(x, y) + 2
|c̃(x, y)|

M
= |Es(x, y)|2

+|Er(x, y)|2 + 2|Es(x, y)||Er(x, y)|
= (|Es(x, y)|+ |Er(x, y)|)2, (4.11)

and,

a(x, y)− 2
|c̃(x, y)|

M
= |Es(x, y)|2

+|Er(x, y)|2 − 2|Es(x, y)||Er(x, y)|
= (|Er(x, y)| − |Es(x, y)|)2. (4.12)

From these relations, for |Er| > |Es| we can write the magnitude of the signal

|Es(x, y)| =

√
a(x, y) + 2 |c̃(x,y)|

M −
√
|a(x, y)− 2 |c̃(x,y)|

M |
2

. (4.13)

We found that the factor M that best describes our measurements changes be-
tween different measurements and its maximum value is M=0.84. At the end of
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Figure 4.4.: (a) Modulus (b) phase of the signal, Es as retrieved from the recorded
interference pattern.

the procedure described above, using M=0.84, the signal field is obtained and is
shown in Fig. 4.4.

In Fig. 4.5, we show the retrieved intensity, as given by |Es(x, y)|2 versus the
intensity directly measured on a CCD camera. |Es(x, y)| is given by Eq. 4.13.
Each data point in Fig. 4.5 represents the intensity in a single pixel. Fig. 4.5
(a) is the case when we corrected for a modulation transfer function of 0.84;
the retrieved signal intensity in each pixel is spread around the corresponding
measured intensity. Fig. 4.5 (b) is the case when no modulation transfer func-
tion correction is made. In this case, the retrieved signal intensities stay below
the measured intensities for most intensity values. We see that correcting for a
modulation transfer function that is constant over the 1st order region in k-space
considerably improves the agreement between retrieved and measured intensities.

In Fig. 4.6 (a) and (b), we show the spatial intensity profiles of the signal re-
trieved from the interferometric detection and the signal captured directly with
the CCD while the reference arm is blocked. It is seen that the spatial pro-
files of the retrieved and measured signal intensities look alike. The normalized
cross-correlation of these images is shown in Fig. 4.6 (c). The peak value of
the normalized cross-correlation is 0.97, indicating that the amplitude is very
accurately retrieved.

When we record a transmission matrix, we determine a certain region of inter-
est on the front surface of the sample and we scan a single focus on this region of
interest. We record the fields transmitted through the sample in response to each
distinct spatial position of the focus on the front surface of the sample. In total
we collect on the order of 1000 fields consecutively. It is important that the foci
probe the predetermined region of interest with consistent displacements. Thus,
we require the setup to remain stable during the measurement time. Therefore,
we monitor the stability of the setup during each measurement. After a set of
interference patterns is recorded, we block the reference and record a set of inten-
sity maps of the same fields whose interference with the reference were recorded.
After the measurement is complete, we compare the retrieved and measured
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Figure 4.5.: Retrieved versus measured signal intensity. (a) Corrected for a constant
MTF of 0.84. (b) Not corrected for MTF. Red dots: measured signal in-
tensity versus itself. Blue dots: retrieved signal intensity versus measured
signal intensity.
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Figure 4.6.: (a) Measured (b) retrieved intensity of the signal. (c) The cross-
correlation of the retrieved and measured signal intensities.

speckle intensities by taking their cross correlations. In most measurements the
cross correlation between the retrieved and measured speckle intensities is greater
than 0.9, and we reject the datasets that have cross correlation less than 0.7.

In this section, we have described how we retrieve the field using a method
based on off-axis holographic detection. We have considerably improved the
detection procedure to work with non-smooth reference and a modulation transfer
function less than 1. We observe that the speckle intensity as retrieved from the
recorded interference pattern is very similar to the speckle intensity recorded
directly when the reference is blocked, and the correlation between the measured
and retrieved intensities is 0.97, which is very high.
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4.3. Data analysis

In this section, we describe the formation and analysis of a transmission matrix
from a set of detected fields. We also give an analysis of sources of noise in a
transmission matrix measurement and discuss their effect on our results.
We measure the transmission matrix of a certain region of the sample. To probe

this region with incident fields, we define a basis to be diffraction limited spots,
or Airy disks on the incident surface of the sample. For each incident-transmitted
field pair, a single focus is created on the incident surface of the sample and the
transmitted field is recorded. In a typical measurement, we record 1250 such
fields from the probed area. The recorded fields have a spatial resolution higher
than required. To reduce the computational demands of the data analysis, we
reduce this resolution by grouping 4 pixels together. Also, the detection field of
view is larger than necessary, so we define a new field of view, and reduce the size
of the detected fields to the detection field of view by applying a sharp window
in real space in the detection plane. After this point, the recorded fields are
reshaped into column vectors and concatenated to obtain a matrix. We study
this matrix by studying the distribution of its singular values.

4.3.1. Noise and errors in transmission matrix measurements

In an experiment, there are many factors resulting from field generation or field
detection, leading to deviation of the measured transmission matrix from the ideal
one. In most experiments reported so far, the noise contribution is completely
ignored. In this section, we describe various noise contributions and discuss their
effect on the measured singular values.

Laser noise The laser noise leads to a fluctuation of the total intensity in de-
tected fields between consecutive measurements. Therefore we monitored the
laser intensity fluctuations during the total duration of a transmission matrix
measurement. The total duration of taking a set of measurements which can be
used to construct a single transmission matrix is 23 minutes, which is doubled
when the stability test, consisting of recording the intensity maps of transmit-
ted fields, is also performed. The laser output intensity is monitored with a
photodiode (Thorlabs SM1PD1A) and a low noise current amplifier (FEMTO
DLPCA-200) with a sampling frequency of 2 Hz and a total measurement time
between 1 hour and 3 hours. The upper bound for the laser intensity noise is
found to be 5% peak to peak, including the measurement noise of the intensity
monitor.

Non-orthogonality of the incident fields In an experiment, the measured trans-
mission matrix is defined in the basis of pre-determined incident fields. It is a
response matrix of the sample to the incident fields. Maxwell’s equations lead
to an uncertainty relation between the real space and momentum space so that
a field cannot be sharply cut in both spaces. In a real experiment, the physical
constraints are finite numerical aperture and finite field of view in the setup.
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To span the detection field of view, which is sharply cut off in real space, basis
functions are required that are sharply cut in real space. However, such fields
cannot be generated due to the limited NA of the system. All of the generated
fields are multiplied with the objective aperture function in momentum space,
convolving the fields that probe the field of view with an Airy disk. Hence, an
orthogonal and complete sampling of the field of view is impossible. There is
either an oversampling of the field of view, where the complete field of view is
probed with a redundancy in the probing, or there is undersampling, where the
fields probing the field of view have negligible overlap but can not fully probe the
field of view.

d
d 3

(a)

d

(b)

Figure 4.7.: (a) Hexagonal lattice. (b) Square lattice. Black dots: positions of the Airy
disks. Red circles: positions of Airy disks after checkerboard filtering.

In our experiments, we use a two-dimensional raster scan of Airy disks as the
incident field set. In principle, two Airy disks with the center of one being placed
at the first zero of the other are orthogonal. However, in the 2D raster scan, only
the nearest neighbor Airy disks can satisfy this condition, but not all other disks
in the scan, leading to a finite overlap between verious incident fields. One can
optimize the incident fields to obtain minimal overlap between fields while probing
a maximal portion of the field of view. For this purpose, one can for instance
scan the Airy disks in a hexagonal lattice, Fig 4.7 (a). In our experiments, we
scanned the Airy disks in a square lattice for simplicity and in the cases when we
found that there is a large amount of overlap, we removed a number of incident-
outgoing field pairs from the original dataset using a checkerboard shaped filter
applied to the 2D square lattice, Fig. 4.7 (b).

To find out how much overlap is present between generated incident fields,
we measure the response matrix T̃0 of a bare, non-scattering substrate.4 The
effect of overlap on the singular values of T̃0 is found to be a variation of singular
values around one and generation of a number of low singular values as the
overlap is increased. This can be directly observed by comparing the singular
values of T̃0 using densely sampled incident fields to the singular values obtained
after applying the checkerboard filter. The singular value histograms of T̃0 under

4To construct T̃0, the sample is replaced by a standard glass cover slip and the usual field
detection procedure is applied.



Data analysis 55

0 1 2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 

 

P(
)

Figure 4.8.: Singular values of the response matrix T̃0 of a glass slide when dense and
sparse sampling is used. Black dots: Singular value histogram for dense
sampling. Red dots: Singular value histogram for sparse sampling.

dense and sparse sampling are shown in Fig. 4.8. In both cases, the histograms
are dominated by a large peak near τ = 1, which indicates that T̃0 is close to
a unitary matrix. There is no peak at the low singular values for the sparsely
sampled fields, as compared to the presence of a small peak observed in the case
of densely sampled fields, indicating that there is significantly less overlap in the
case of the sparsely sampled fields.

Fluctuations in the total intensity of generated fields It is observed that the
total intensity in the generated incident fields is not the same between spots
focussed on different positions inside the region of interest. Even in the case
when there are no drifts or instabilities in the setup, the intensity is highest
for the foci around the center and is reduced for the foci close to the edges of
the area that is scanned on the front surface of the sample. This could be due
to diffraction efficiency of the SLM and the response of the optics in the setup
being different for different generated fields. In Fig. 4.9, the normalized average
intensity of the focussed spot scanned over the front surface of a glass slide is
shown. In this measurement, we observe a mean of 0.92, a standard deviation
of 0.03 and a peak to peak variation of 0.14 for the fields transmitted through
a bare glass slide. Since this contributes a root-mean-squared (rms) intensity
fluctuation of only 3%, we do not compensate for this effect.
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Figure 4.9.: Fluctuations of the intensity of the focus scanned over the pre-determined
area on the front surface of a glass slide.

Additive detection noise In order to investigate how much additive noise is
present in the detected fields, we performed a measurement where the signal arm
is blocked so that only the reference is recorded. The recorded data are analyzed
in the same way as the fields transmitted through the sample are analyzed. Since
there is no signal, with this measurement we effectively retrieve only additive
detection noise. The retrieved noise fields consist of complex numbers. When
the histograms of the real and imaginary parts of these noise fields are plotted,
they are found to have Gaussian distributions with mean of zero and standard
deviations of 3.42 and 3.32 counts, respectively. In order to learn how the additive
noise level compares to the detected signal level, we define a signal to noise ratio
as

SNR =
⟨
√
I(k)⟩k√

⟨|Enoise(k,m)|2⟩k,m
, (4.14)

with,

I(k) = ⟨|Esignal(k,m)|2⟩m. (4.15)

Here, the index k indicates different fields that are measured consecutively and
index m indicates each individual pixel in a single field. The brackets ⟨.⟩k, ⟨.⟩m
and ⟨.⟩k,m indicate averaging over consecutive measurements, over all pixels in a
single measurement and over all pixels in all measurements, respectively. In other

words, I(k) is the average intensity in a single, kth detected field and ⟨
√
I(k)⟩k

is averaged over consecutive detected fields. Esignal is a matrix of detected fields
through the sample, with each column, k corresponding to a different field and
the rows, m corresponding to pixels in each measurement. Similarly, Enoise is
the matrix of detected fields when the signal arm is blocked. The signal to noise
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ratio per 4 by 4 superpixel of the camera is found to be 12.3 on average for the
datasets measured through GaP nanowires.

Phase noise In addition to the additive detection noise, there is phase noise on
the measured transmission matrix. This noise is a combination of (i) variation
of phase between rows of the transmission matrix, that is the same for each
column, (ii) variation of phase between columns of the transmission matrix, that
is the same for each row, (iii) random variations of the phase between rows and
columns. For now, let us and assume we have only factors (i) and (ii). Then, the
measured transmission matrix can be represented as

T̃ = ΦT Φ̃. (4.16)

Here T̃ is a transmission matrix including the phase errors, Φ is the diagonal ma-
trix representing the phase offsets between each row of the transmission matrix,
Φ̃ is the diagonal matrix representing the phase offsets between each column of
the transmission matrix and T is a transmission matrix with no phase errors.
Φ and Φ̃ are unitary matrices. In this case, the singular values of T̃ and T are
identical, meaning that the noise terms represented by Φ and Φ̃ are irrelevant for
the singular values of T̃ .
Term (iii) on the other hand, can lead to modifications of the singular value

histogram of T̃ as compared to the singular value histogram of T . To find the
amount of random phase noise in detected transmission matrices, we investigate
the same field being recorded consecutively. We investigate a dataset which
was recorded under stable conditions and with the total intensity fluctuations
in the retrieved fields being less than 3% peak to peak. We compare |⟨E1, Ek⟩|
to |⟨|E1|, |Ek|⟩|, with k the index indicating the kth retrieved field, E1 the first
retrieved field and Ek the kth retrieved field. ⟨., .⟩ indicates inner product. The
deviation between |⟨E1, Ek⟩| and |⟨|E1|, |Ek|⟩| gives us information on the amount
of phase randomization during the recording of the dataset.
As seen in Fig. 4.10, the absolute value of normalized inner products of the

field moduli decreases from 1 to 0.97 and the normalized inner products of the
fields decrease from 1 to 0.93. From these results, we conclude that there is some
randomization of the measured phase, reducing the inner products of the fields
by about 4% below the inner products of the field moduli over a recording time
of 400 fields, i.e., over 15 minutes. This randomization in phase slightly modifies
the singular values that are retrieved from the measured transmission matrix as
compared to the singular values of an ideal transmission matrix, however, the
phase randomization is found to be small.

Intensity noise in detection By comparing data taken over a period of several
minutes we observed that the fringe visibility during our interferometric detection
is not constant over time, which is most likely due to a time-dependence of the
coherence length of the HeNe laser. This is studied by investigating the total
intensity in the retrieved fields when the incident field on the sample is kept the
same and the interference between the field transmitted through the sample and
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Figure 4.10.: Blue curve: Absolute value of inner product of each kth field modulus
with the 1st field modulus, normalized to the inner product of 1st field
with itself. Red curve: Absolute value of inner product of each kth field
with the first field, normalized to the inner product of 1st field with
itself.

the reference beam is recorded over a 0.5 hour time interval.5 When the fringe
visibility is low, the retrieved signal intensity is reduced. In Fig. 4.11, the total
retrieved intensity is shown in the field of view for the same field being sent
through the sample over 0.5 hours. It is observed that the total intensity reveals
a slow variation over the first 500 measurements and remains stable for the last
400 measurements. The fluctuations in total intensity are maximally 25% peak
to peak, or about 10% rms.

Another test, in which we compared total intensities in the retrieved and mea-
sured speckle fields through a 6 µm thick layer of GaP nanowires reveal that the
ratio between the total intensities in retrieved and measured speckle fields have
fluctuations below 10% rms levels.

Total noise When all of the error sources described above are considered, it is
seen that the dominant contribution to noise is the intensity fluctuations in the
retrieved fields relative to the directly measured intensities, which is in the range
of 10% rms.

5Root mean square fluctuations in the total intensity of recorded interference patterns is found
to be 0.4%.
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Figure 4.11.: The total intensity in retrieved field versus time, when the field incident
on the sample is unchanged.

4.3.2. Effect of noise on the singular values of the transmission
matrix

In order to understand if and how the singular value histograms are affected by
the dominant noise source, we made several tests. Here, we first present a nu-
merical test, where intensity fluctuations with varying peak to peak amplitude
are introduced to an otherwise noise-free transmission matrix. For this purpose,
a numerical transmission matrix is constructed having singular values obeying
DMPK statistics [15, 16]. DMPK statistics is the theoretical prediction for the
distribution of the singular values of a complete transmission matrix. In an ex-
periment, a complete transmission matrix of the sample can not be recorded e.g.
due to limited numerical aperture of the objective lenses leading to a limited
information access. This limited information access is included in the numerical
model by cropping the initially generated matrix.6 In order to include intensity
noise in the numerically generated matrix, the columns, the rows, or both the
columns and rows of the matrix are multiplied by uniformly distributed random
numbers with a peak to peak amplitude varying between 0% and 200%. Multiply-
ing different columns of the numerically generated matrix with random numbers
simulate intensity fluctuations between different recorded fields and multiplying
rows of the numerically generated matrix with random numbers simulate inten-
sity fluctuations within a single detected field; multiplying both rows and columns
of the numerically generated matrix with random numbers simulate both fluctu-
ations. In addition to the tests performed with numerically generated matrices,
we present two tests performed using the experimental data. In the tests per-

6Detailed description of the numerical model is provided in Chapter 5.
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Figure 4.12.: Singular values of a noiseless, numerically generated matrix (red) and a
matrix including random intensity noise (black), with (a) 20% (b) 40%
(c) 100% (d) 200% peak to peak random fluctuations in the modulus of
fields between columns of the transmission matrix.

formed with experimental data, we investigate the effect of fluctuations in the
total retrieved intensity between different detected fields and the effect of additive
random detection noise on the singular values of the transmission matrix.

In Fig. 4.12, the singular value histograms of a numerically generated matrix
without intensity noise and the singular value histograms of a numerically gener-
ated matrix including intensity noise between its columns are shown. In Fig. 4.12
(a) and (b), the noiseless and noisy singular value histograms are shown for 20%
and 40% peak to peak fluctuations in the field moduli. The singular value his-
tograms are almost identical at these noise levels. In Fig. 4.12 (c) and (d), the
noiseless and noisy singular value histograms are shown for high levels of fluctu-
ations in the field moduli as 100% and 200% peak to peak. For these very high
noise levels, which are about 8 times higher than the experimental noise levels
for the 200% peak to peak amplitude noise, the noisy singular value histograms
have a sharp peak and its tail extends further to high singular values compared
to the histograms generated for low noise levels. From this test, we conclude that
fluctuations in the total intensity of the detected fields have a small effect on the
singular values of the transmission matrix, which can be neglected at our noise
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Figure 4.13.: Singular values of a noiseless, numerically generated matrix (red) and a
matrix including random intensity noise (black), with (a) 20% (b) 40%
(c) 100% (d) 200% peak to peak random fluctuations in the modulus of
fields between rows of the transmission matrix.

levels of 10% rms.

In Fig. 4.13, the singular value histograms of a noiseless, numerically gener-
ated matrix and the singular value histograms of a numerically generated matrix
including intensity noise between rows of the matrix are shown. In Fig. 4.13
(a) and (b), we show the noiseless and noisy singular value histograms for 20%
and 40% peak to peak fluctuations in the field moduli, respectively. In Fig. 4.13
(c) and (d), we show the noiseless and noisy singular value histograms for the
high noise levels of 100% and 200% peak to peak fluctuations in the field moduli.
At these exaggerated noise levels the noise-free and noisy histograms again show
discrepancies. In these cases, the peak of the histogram shifts towards higher sin-
gular values and becomes less sharp. From this test, we conclude that if the total
intensity in each detected field is fixed and the intensities of individual speckles
in each detected field fluctuate, the singular value histogram gets modified only
at very high noise levels. Again, our experimental histogram is expected to be
not significantly modified by this type of noise.

Finally, we made a test with intensity fluctuations between both rows and
columns of the numerically generated matrix. First, the total intensity in the



62 Experimental Methods

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

P
(t

)

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

P
(t

)

(b)

(c) (d)

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

P
(t

)

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

P
(t

)
(a)

Figure 4.14.: Singular values of a noiseless, numerically generated matrix (red) and
a matrix including random intensity noise (black), with (a) 20% (b)
40% (c) 100% (d) 200% peak to peak random fluctuations in the mod-
ulus of fields between different columns and within each column of the
transmission matrix.

columns are randomized with varying amounts of peak to peak field modulus
fluctuations. After this, fluctuations within each column are introduced. The
results of the test are shown in Fig. 4.14. In Fig. 4.14 (a) and (b), the singular
value histograms of a noiseless, numerically generated matrix and the singular
value histograms of a numerically generated matrix including intensity noise be-
tween rows and columns of the matrix are shown for noise levels of 20% and 40%
peak to peak field modulus. The noise-free and noisy singular value histograms
are again almost identical at these noise levels. In Fig. 4.14 (c), the singular value
histograms for a noise level of 100% peak to peak fluctuations in the field moduli
is shown and the noise-free and noisy singular value histograms show some de-
viations. Only at the very high noise levels of 200% peak to peak in amplitude,
as shown in Fig. 4.14 (d), the singular values are considerably affected by noise.
The conclusion of this test is that the fluctuation of total intensity between the
columns of the transmission matrix has a more dominant effect on the singular
value histograms compared to the fluctuations of intensity within each column.
In addition, the effects of intensity noise on the singular value histograms is
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Figure 4.15.: Comparison of singular value histograms of experimental transmission
matrices obtained when each field is normalized by total intensity in it
(red data points) and when unnormalized (black data points).

significant only at exaggerated noise levels, as in the previous two tests.

An additional test to see whether fluctuations in the total intensity between
different columns of the transmission matrix have an effect on the singular value
histograms is made using the experimentally measured transmission matrices of
the 6 µm thick layer of GaP nanowires. In this test, we remove the fluctuations
of the total intensity between the columns of the recorded matrix by normalizing
each column by its inner product with itself. Note that this way, the mesoscopic
fluctuation signal in the total transmission through the sample in between differ-
ent measurements is eliminated as well as the fluctuations due to noise. We show
the singular values of the transmission matrices that are normalized and unnor-
malized in Fig. 4.15. It is seen from the figure that the two histograms overlap
perfectly. It is concluded that the singular value histogram is not affected sig-
nificantly by fluctuations in the total intensity between different detected fields,
neither by noise nor even by the mesoscopic intensity fluctuations.

In addition to the tests for the effect of the intensity fluctuations on the sin-
gular values, we also performed a test of the effect of the additive noise on the
singular values. The level of the additive noise is small compared to the multi-
plicative noise, so intuitively, one would assume that it can be ignored. However,
the additive noise is of a different nature than the fluctuations of the total inten-
sity between different recorded fields or the spatial intensity fluctuations within
each field. The additive noise is a matrix of complex uncorrelated random vari-
ables that is added to the detected transmission matrix. One can intuitively see
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Figure 4.16.: Singular value histograms in the presence of various levels of additive
noise. Red dots: Experimental singular value histogram. Singular value
histograms when additive noise level is tripled: black dots; increased by
5 times: green dots; increased by 15 times: blue dots.

that at high levels of additive noise, we effectively have an uncorrelated random
matrix. We make a test to see when the additive noise starts to affect the sin-
gular value histograms. For this test, we artificially added additive noise to a
recorded transmission matrix, taken from Chapter 5. The singular value his-
tograms obtained from this test are shown in Fig. 4.16. It is seen that up to an
additive noise level of 3 times that of the experimental noise levels, the singular
value histograms hardly change. As the artificially added noise level is increased,
the peak of the singular value histograms becomes sharper and gradually shifts
towards higher singular values. The histograms also have a narrower spread of
singular values as the additive noise level is increased and starts to be reshaped
into a Marcenko-Pastur probability density function, which is the singular value
probability density function of an uncorrelated random matrix.

After an elaborate analysis of the noise terms, the dominant noise source in our
experiments is found to be the fluctuation between total retrieved and measured
intensities between different measurements and is found to be at 10% rms level.
By numerical tests, the main conclusion is that at these noise levels, the singular
value histograms are not significantly altered by the noise.

4.3.3. Effect of detection field of view on singular values

In addition to the experimental noise that can affect the results of the transmis-
sion matrix measurements, the procedures followed in the data analysis can also
affect the outcome of the transmission matrix measurements. Here, we discuss
how a chosen detection field of view can affect the singular values.

Since we deal with samples having an open geometry, we seemingly have free-
dom in terms of how to determine the field of view on the detection side. Sup-
pose we choose a very small field of view, even smaller than the region of interest
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Figure 4.17.: The effect of detection field of view on singular values. Black histogram:
12 µm by 12 µm field of view. Red histogram: 13.9 µm by 13.9 µm
field of view. Blue histogram: 16 µm by 16 µm field of view. Green
histogram: 39.6 µm by 39.6 µm field of view.

within which the incident focus is scanned. Such a field of view would cut out a
large part of the transmitted intensity and would lead to a spurious variation in
the total detected intensity as large parts of the transmitted speckle field would
sometimes fall outside the detection window. On the other hand, if we perform
the data analysis using a very large field of view, we unnecessarily accumulate a
large amount of additive noise, which modifies the shape of the observed singular
value histograms.
In Fig. 4.17 we show the singular value histograms of a transmission matrix

recorded using a 6 µm thick layer of GaP nanowires for various detection fields
of view, of width 12 µm, 13.9 µm, 16 µm and 39.6 µm. We observe that the
shape of the histogram depends significantly on the field of view. As the field
of view gets smaller, the peak of the histogram tends to shift to lower singular
values and the tail of the histogram extends further to higher singular values.
This is consistent with the idea that at a large field of view more additive noise
is sampled. Indeed, as the field of view is increased the histogram changes shape
similarly to the trend shown in Fig. 4.16. In the data analysis procedure, we use
a field of view equal to the area covered by the full width at half maximum of
the intensity average of all outgoing fields on the rear side of the sample, making
the field of view of the GaP nanowire samples 13.9 µm wide (also discussed in
Chapter 5).

4.4. Conclusions

In this chapter, we have described the field generation and field detection methods
that we use to measure transmission matrices. An improvement to standard off-
axis holographic detection was described and the retrieved fields are shown to
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correlate well with separate intensity measurements. We have also described the
data analysis procedure and the information that we are seeking in the recorded
transmission matrices, i.e., the distribution of the singular values.

A noise analysis of the recorded transmission matrices is provided. It is ob-
served that the dominant noise source in the recorded transmission matrices is
the fluctuations in the total intensities of the retrieved fields as compared to di-
rectly measured fields. Numerical tests were performed to investigate the effects
of this measurement noise on the singular values of the transmission matrices.
It is observed that the noise levels we have in the experiment do not affect the
overall shape of the singular value histograms. Using the apparatus and the data
analysis procedure as described in this chapter, we can measure transmission
matrices with many degrees of freedom and acceptable signal to noise ratio.
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CHAPTER 5

Transmission Matrices of Strongly Scattering

Random Photonic Nanowire Ensembles

5.1. Introduction

In this chapter, measurements are presented of optical transmission matrices
of strongly scattering random photonic nanowire ensembles. Our measurements
show correlations in the complex transmission matrices, as theoretically predicted
for samples exhibiting a strong multiple light scattering [1]. An especially inter-
esting aspect is the fact that we observe these correlations despite measuring a
very small part of the transmission matrix. Using samples of different thickness
but with otherwise similar properties we observe a strong dependence of correla-
tions on sample thickness as expected from theory. In addition, we demonstrate
a new approach to retrieve the scattering strength of the samples under study,
using transmission matrix measurements along with numerical modeling.

An optical transmission matrix is a matrix describing the relation between the
incident and transmitted fields of an arbitrary medium in a certain pre-defined ba-
sis. While the transmission matrix of a well-known optical element is a simple one,
the transmission matrix of a strongly scattering medium is extremely complex [2].
While experiments that implicitly rely on measuring part of the transmission ma-
trix of a random photonic medium have been carried out for decades [3–9], it is
only recently that several optical and microwave experiments have demonstrated
that large parts of the transmission matrix of a random photonic medium can be
measured directly [10–14]. In the optical experiments, knowledge of the trans-
mission matrix has been used for practical applications of focusing [10, 11, 15],
sending an image [16], and enhancing the transmission [17] through a random
photonic medium. In Ref. [18], incident wavefronts were carefully shaped such
that elusive open transmission eigenchannels in a random photonic medium were
accessed. In microwave experiments, explicit measurements of the transmission
and scattering matrices have been used to confirm the predictions of random ma-
trix theory for wave transport [1] through random quasi 1D waveguides [13, 14]
and 2D chaotic microwave cavities [19, 20]. Recently, frequency-dependent trans-
mission matrix measurements have been reported, which can extend the appli-
cations of optical transmission matrices to controlling light transport through
random photonic media in space and time [21].

Knowledge of optical transmission matrices has proven useful since it contains
the information on how a certain element in an optical setup, in our case a
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random photonic medium, modifies the transmitted light and enables one to
assign a desired functionality to the optical element. Besides these practical
uses of optical transmission matrices, it has been proposed that one can use the
transmission matrix to study the properties of the optical element itself [2, 10].
We are interested in light transport in three dimensional random photonic media,
and so far no transmission matrix experiments have yielded information on the
optical properties of 3D media. This leads to the main motivations behind this
chapter: first motivation is to observe that measured transmission matrices have
correlations. Achieving this, we deduce that sample information must be retained
in the measured transmission matrix, bringing us to the second motivation, which
is to investigate what type of sample information is retained in our transmission
matrix measurements and to retrieve this information.

In Section 5.2, a description is given of the samples that are used and in Sec-
tion 5.3 a brief description is provided of our experiment. Our results on the
singular value histograms of measured matrices are described in Section 5.4. A
description is given of the model that we implemented to predict the singular
value histogram of an optical transmission matrix in Section 5.5. Finally, in
Section 5.6, predictions of the model are compared with the singular value his-
tograms obtained experimentally in order to estimate the optical properties of
the samples under investigation.

5.2. Samples

Random photonic nanowire ensembles are interesting samples for our studies as
they are reported to be extremely strongly scattering and already a thin layer
scatters light multiply [22, 23]. Strong scattering makes the correlations in a
transmission matrix more prominent. A thin sample makes the measurements
and analyses relatively easy as compared to a thick sample since our samples
have a slab geometry and light diffuses to a smaller area through a thin slab as
compared to a thick one [24–26], reducing the problems associated with the open
geometry of the sample.

The nanowires are grown using a metal-organic vapor epitaxy on a GaP (100)
substrate [22]. GaP is a semiconductor with a very high refractive index of 3.32 at
λ= 632.8 nm [27]. After being grown, the nanowires are pressed with a glass slide.
During the pressing of the glass slide, long nanowires are broken and blend with
the rest of the nanowires. Thus the nanowire ensemble becomes more disordered.
The glass slide is left pressed onto the sample in order to protect the nanowires
and to allow imaging by an immersion objective.

Samples similar to the ones used in this chapter were reported to have a trans-
port mean free path as low as ltr=0.20±0.02 µm at λ=632.8 nm [22]. A study con-
ducted with similar samples showed that light transport through these samples
has strong contributions from mesoscopic interference effects, and the transport
takes place over only a few open transmission eigenchannels [23].

It was also reported that the diffusion through these samples is anisotropic [23].
The birefringence of similar GaP nanowire samples was studied previously and
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(a) (b)

1 mm 1 mm

Figure 5.1.: Scanning electron microscope images of (a) Side view, (b) top view of
a random photonic ensemble of GaP nanowires, before they are pressed
with a glass slide.

was reported to be as large as ∆n = 0.209 [28, 29].
By considering the range of possible values of the material parameters transport

mean free path ltr and effective refractive index neff , we expect kltr to be between
3.7 and 7.5. The parameter kltr indicates how strongly scattering a sample is,
smaller kltr means stronger scattering (see Section 2.5, S = 1/kltr). Here, we
consider the ltr values reported in Ref. [23] and neff values ranging from 1.5 and
2.3 as estimated from Bruggeman effective refractive index formula [30] with a
filling fraction 44%±15%1 for the GaP. The anisotropy of the samples is ignored
in the calculation of neff .
We study samples with 1.6±0.2 µm and 6±0.5 µm thick layers of nanowire en-

sembles sandwiched between a GaP slab and a standard cover glass (a schematic
is given in Fig. 5.7). Throughout this chapter, these samples are called the “thin
sample” and the “thick sample”, respectively. A scanning electron microscope
(SEM) image of a similar thick sample before a glass slide is pressed on top is
provided in Fig. 5.1. The side view is shown in Fig. 5.1 (a). Individual nanowires
are resolved, which are up to 6.4 µm long with up to 500 nm diameter at their
base and 300 nm at their tip. The top view is shown in Fig. 5.1 (b). While it
is seen that some nanowires are randomly oriented with respect to the substrate
normal, most nanowires seem to have a preferred orientation.
In Fig. 5.2, we show a map of the thick sample viewed with an optical mi-

croscope using (a) transmission illumination, (b) reflection illumination. The
sample consists of several shards, as the gallium phosphide substrate is broken.
Moreover, it is seen that the sample has different regions that look slightly dif-
ferent than neighboring regions but it is homogeneous within each region. Some
regions look darker in transmission and brighter in reflection and vice versa. At
certain regions, an air gap of 6±2 µm width is found between the nanowires and
the glass slide. The thickness of the air gap is measured by alternately bringing
the top of the nanowire ensemble and the bottom surface of the glass in focus.
An air gap is undesired as it introduces an extra optical layer that complicates
experiments and interpretation.

1Estimated from SEM pictures
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(a) (b)

500 mm 500 mm

Figure 5.2.: (a) Transmission (b) Reflection image of the 6 µm thick sample captured
with an optical microscope.

At other areas, we could not conclude on the existence of the air gap as it
cannot be resolved using the refocusing method. This indicates that the gap is
either thinner than the depth of field of the microscope objective (50×, 0.8NA),
which is calculated to be 1.5 µm, or the nanowires even touch the glass. The
measurements reported in this chapter are carried out on areas where no obvious
air gap is found under the optical microscope.

An image of the sample captured in the experimental setup from the side of
the glass slide is shown in Fig. 5.3. The figure shows the interface between the
GaP nanowire ensemble and the glass slide. A high intensity region is shown
of ≈25 µm diameter, corresponding to the area illuminated by a white LED in
the setup. In the illuminated area, distinct shapes of individual nanowires are
seen on the glass surface. However, occasionally, there are empty areas devoid of
nanowires occupying several µm2. The presence of regions devoid of nanowires
is consistent with the hypothesis of an air gap being present along with several
nanowires stuck on the glass in the areas where we carried out measurements
even though with the refocussing method we could not detect a gap.

A momentum-space map, showing the root mean square (rms) field modulus

versus the transversal wave vector,
√
⟨|E(k)|2⟩, of fields transmitted through

the thick sample is shown in Fig. 5.4. The data are averaged over 625 different
incident fields (diffraction limited spots scanned over the front surface of the
sample). As can be seen from Fig. 5.4 (a), the transmitted light is not uniform in
momentum space. Cross-sections of the disk that is shown in Fig. 5.4 (a), taken
along x- and y-directions are shown in Fig. 5.4 (b). There is a bright central
region in momentum space, placed on top of a pedestal that has an rms field
modulus less than half of the peak value. It is observed that the height of the
pedestal is slightly different along x- and y-directions.
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Figure 5.3.: Image of nanowire-glass interface of the thick sample taken in situ in our
setup using a white LED.

Normally, light that exits a scattering sample approximately has a Lambertian
distribution, and can be measured by escape function measurements, see, e.g.
Ref. [31–34]. The observed momentum space profile deviates from a Lambertian
profile, which can be explained if a thin air gap is present between the nanowires
and the glass slide, with a small amount of nanowires stuck to the glass. The large
wavevectors that can propagate in the nanowire layer due to its high effective
refractive index become evanescent in the air gap and the transverse wavevectors
are limited to a maximum of k0 = 2π/λ0, with λ0 being the free space wavelength,
in the air gap. After the air gap, the nanowires that are broken and stuck on
the glass scatter a small portion of the light to transverse wavevectors with a
large magnitude. The light scattered from the single layer of broken nanowires
on glass is detected with our NA=1.42 oil immersion objective, giving rise to the
pedestal.

For the fields transmitted through the thin sample, we observe the limitation
of kx/k0 and ky/k0 to a maximum of unity as well. Moreover, while studying
the thin sample in our setup, we could not see a sharp image of the nanowires on
the detection side. This is attributed to the nanowires being placed at a distance
from the glass slide that is larger than the working distance of the objective.
These observations indicate that there is an air gap between the nanowires and
the glass slide for the thin sample.

A momentum-space density map, showing the root mean square field modulus
versus the transverse wave vector,

√
⟨|E(k)|2⟩ of fields transmitted through the



74 Transmission Matrices of Strongly Scattering Random Photonic Nanowire
Ensembles

(a)

-2 -1 0 1 2

-2

-1

0

1

2

0.2

0.4

0.6

0.8

1

k /k
x 0

k
/k

y
0

n
o
rm

a
liz

e
d
 fie

ld
 m

o
d
u
lu

s

(b)

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

k /k
x,y 0

n
o
rm

a
liz

e
d
 f
ie

ld
 m

o
d
u
lu

s
Figure 5.4.: (a) Momentum-space density map of root mean square fields,

√
⟨|E(k)|2⟩

transmitted through the thick sample. (b) Cross sections of the image in
(a) along x- (blue curve) and y- (red curve) directions.
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Figure 5.5.: (a) Momentum-space density map of the root mean square fields,√
⟨|E(k)|2⟩ transmitted through the thin sample. (b) Cross sections of

the image in (a) along x- (blue curve) and y- (red curve) directions.

thin sample is shown in Fig. 5.5. The transmitted light is limited to a central
region in momentum space. The low intensity pedestal that we see in Fig. 5.4 has
a much lower intensity in the case of fields transmitted through the thin sample.
This observation suggests that there is an air gap between the nanowires and the
glass slide, limiting the detected transversal wave vectors to a maximum of k0.
The absence of the pedestal suggests that there are not many nanowires stuck to
the glass surface.
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5.3. Experimental method

H
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mirror
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layer

GaP

Figure 5.6.: Experimental setup. HeNe: laser. BS: 50:50 beam splitter. SLM: phase-
only spatial light modulator. HWP: half-wave plate. GaP: sample sub-
strate, nanowire layer: sample. Objective 1: 40X 0.6-NA objective. Ob-
jective 2: 60X 1.42-NA oil immersion objective. L: 500 mm focal length
lens. P: polarizer. CCD: camera sensor.

The experimental setup is shown in Fig. 5.6. The light source is a helium-neon
laser with a wavelength of 632.8 nm and an output power of 5 mW. Light from
the laser is expanded and divided into two arms. Light in one arm is used as a
reference field, light in the other arm, which is the signal arm, is reflected from
a phase-only spatial light modulator (SLM, Holoeye Pluto). Light modulated
by the SLM is passed through a half-wave plate (HWP), and focused on the
interface of the nanowire layer with an infinity corrected objective. The sample
is oriented with the GaP substrate on the incident side. In order to reduce the
aberrations caused by focussing through the 300 µm thick GaP slab that has
a thin layer of SiO2, of approximately 300 nm thickness deposited on top, the
illumination objective is chosen to have a moderate NA of 0.6. We use its cover
glass correction ring to minimize the aberration that the GaP slab induces. The
light transmitted through the nanowire layer is collected with an oil immersion
objective (Olympus 60× NA=1.42). The sample surface is imaged onto the CCD
camera with a calculated magnification of 167×. The light transmitted through
the sample and the reference beam pass through a polarizer and interfere on
the CCD sensor plane. We use off-axis holographic detection (see Chapter 4),
which is a method based upon original proposals by Leith and Upatnieks [35],
and a digital implementation by Takeda and coworkers [36]. With this method,
a relative phase map between the signal and the reference fields is obtained in
the detection plane. Throughout the text, when we describe a measured field,
we refer to the retrieved map of field modulus and phase.
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Figure 5.7.: Recording of the transmitted fields. (a) Amplitude and (b) phase map
of a single incident field. (c) Amplitude and (d) phase map of the cor-
responding transmitted field. (e) GaP slab glued to a glass slide. (f)
Schematic of the checkerboard filter applied to the incident fields. Black
grid: original grid; the incident fields are focused on the corners of each
square in the grid. Black dots: positions of incident spots that are kept
in the analysis.

In Fig. 5.7 (a-d), we show an example of an incident-transmitted field pair,
corresponding to the incident field being focused at the center of the probed
area. |Ein,m| and ϕin,m represent the modulus and the phase of the incident field,
respectively. Here, m is an index used to label different incident fields, since the
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transmission matrix is collected from hundreds of measurements, |Eout,m| and
ϕout,m represent the modulus and the phase of the fields transmitted through
the sample. In order to record the actual incident fields at the front surface of
the nanowire layer, we replace the sample with a blank substrate, which is a
GaP slab glued to a glass slide, as shown in Fig. 5.7 (e). We focus the incident
fields at the interface between the GaP slab and the glass slide and image this
plane, which is represented by the dashed line in Fig. 5.7 (e), on to the CCD
camera. In the field modulus map of the mth incident field with m = 157 out
of mmax = 313, shown in Fig. 5.7 (a), a single bright spot at the center of the
image is seen. The corresponding phase map, shown in Fig. 5.7 (b) has concentric
rings of phase wraps covering the field of view, implying that the focus obtained
through the GaP slab contains some residual aberrations even after the use of
the correction ring on the objective. Maps of the modulus and of the phase of
the corresponding fields transmitted through the nanowire layer are shown in
Fig. 5.7 (c, d), respectively. They show a speckle field, with bright and dark
spots in the map of the field modulus, Fig. 5.7 (c) and a phase that is constant
within each speckle and that changes randomly between each speckle, Fig. 5.7
(d). By applying phase gradients on the SLM, we scan the incident spot over
a 12 µm by 12 µm area on the front sample surface. In order to minimize
overlap between incident fields, we apply a checkerboard filter to positions of the
incident spots on the front sample surface, Fig. 5.7 (f). The spacing between the
nearest neighbor spots is 673±25 nm, which is 1.06λ ± 0.04λ and the spacing
between the second nearest neighbor spots is 948±22 nm, which is 1.5λ± 0.04λ.
The size of the spot focussed on the front surface of the sample is ≈1 µm at
FWHM. For each position of incident field, the corresponding transmitted field
distribution is recorded and filtered as described in Section 5.4. The recorded
two dimensional complex map of the mth transmitted field is reshaped into one
dimensional column vector Eout,m. Finally, all Eout,m are concatenated to form

a matrix T̃ .

The transmission matrix T̃ is measured using far-field optics. The fields pass
not only through the sample, but also through the optics before the sample, the
GaP slab, the glass slide and the optics after the sample. Therefore, the measured
matrix T̃ is equal to the product T̃ = T2TT0. Here, T is the transmission matrix
of the sample, the singular values of which we are interested in. T2 is the matrix
that maps the fields at the rear surface of the sample to the detected fields, and
T0 is the matrix consisting of the fields at the incident surface of the sample.

Random matrix theory predicts the singular values of the sample transmission
matrix T , which is not directly accessible. The statistical properties of T̃ are
identical to those of T if T2 and T0 are unitary. In order to investigate how far
this is the case and to be able to compensate for any deviations, we measure a
reference matrix T̃0 = T2T0. T̃0 is the matrix that is recorded when the sample is
replaced by a blank sample consisting of a GaP slab glued to a glass slide as shown
in Fig. 5.7 (e). While it is conceivably possible to compensate for non-unitary
matrices T0 and T2 by pseudoinversion [37], this procedure is very sensitive to

phase drifts that may occur in between the measurements of T̃0 and T̃ . Instead,
we adopt the significantly more stable procedure of taking T̃0 into account when
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modeling the experiment.
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Figure 5.8.: Transmission singular value histogram of the reference GaP substrate
without nanowires, normalized so that

√
⟨τ2⟩ = 1. Black dots: measured

singular value histogram.

In Fig. 5.8, we show the singular value histogram of T̃0.
2 The incident fields

are focused on the interface between GaP and glass and the transmitted fields
are recorded from the same plane. The singular value histogram shows a peak
centered at the singular value of 1.02 with a full width at half maximum of
0.23. A small but significant variation to low singular values is observed, which
is attributed to overlap between the fields transmitted through the reference
sample. Two isolated singular values are observed at 1.96 and 2.91 (not shown).
The two isolated high singular values are present in all sets of recorded matrices,
and are found to be due to fields that are present as an offset in all recorded
fields such as a small reflection from the front window of the SLM. Whereas
we observe a sharp peak centered at 1 in the singular value histogram of the
reference measurement, this peak has a finite width and is not a delta function.
This finite width is attributed to an interplay of detection noise, fluctuations in
the focussed spot intensity and spatial overlap between incident spots, e.g., by

2The singular values are normalized so that their second moment is equal to 1 as is usually
done when an a-priori normalization is not available [10, 38, 39]. The same normalization
is performed in all of the presented singular value histograms in this chapter.
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spherical aberration shown in Fig. 5.7. In addition, due to Fourier uncertainty
relations, there is no basis of incident or outgoing modes that is simultaneously
sharply defined in real space and momentum space, leading to either oversampling
or undersampling of the probed area (see also Chapter 4).

5.4. Results

In this section, we describe the results of the measurements we performed with
1.6 µm and 6 µm thick layers of GaP nanowires. We measure the transmission
matrices of both samples and investigate their singular value histograms.

According to random matrix theory of light transport, a random photonic
medium has a large number of closed transmission eigenchannels that reflect
light back and a small number of open transmission eigenchannels that com-
pletely transmit light. The number of open transmission eigenchannels in a ran-
dom photonic sample is approximately Nltr/L, where N is the total number of
transmission eigenchannels of the sample, ltr is the transport mean free path, L
is the thickness of the sample. If the number of open transmission eigenchannels
is small in a sample, all of the transmitted fields in response to different incident
fields are linear superpositions of a small number of independent fields and are
correlated. An ensemble of nanowires with a thickness of 6 µm is about 20 trans-
port mean free paths thick. The probed area of the sample is expected to have
a number of open transmission eigenchannels between about 240 and 750, given
the uncertainties in the material parameters ltr and neff .

3 In our experiment,
we probe the sample with 626 incident fields, which is in the same range as the
number of open transmission eigenchannels. In this case, we expect to observe
correlations in the fields transmitted through the thick sample. Moreover, we
expect to be able to retrieve sample parameters by investigating the retrieved
singular values.

In the case of the thin sample, the number of open transmission eigenchannels
is estimated to be between 820 and 2550, by considering the previously reported
range of ltr and neff .

4 In this case, the number of open transmission eigenchannels
is larger than the incident-transmitted field pairs that we excite and detect. So
we expect to observe significantly less correlations in the transmission matrices
of the thin sample as compared to that of the thick sample.

In this section, the experimentally obtained singular value histograms are com-
pared to the Marcenko-Pastur density [40]. This density describes the probability
density of singular values of a random, uncorrelated matrix. Therefore, compar-
ing the experimental singular value histograms to the Marcenko-Pastur density
provides a qualitative test for determining whether there are correlations in the
measured transmission matrices.

The minimum and maximum singular values along with the shape of the
Marcenko-Pastur density depend on the aspect ratio, γ, i.e. the ratio between

3To determine N, the sample is modeled as a waveguide 12.8-µm wide and 6-µm long and
Eq. 5.5 is used.

4The sample is modeled as a waveguide 12.2-µm wide and 1.6-µm long.
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Figure 5.9.: (a) Momentum-space density map of root mean square fields,
√

⟨|E(k)|2⟩
transmitted through the 6 µm thick layer of GaP nanowires after being
filtered in momentum space. (b) Cross sections of the image in (a) along
x- (blue curve) and y- (red curve) directions. Solid red and blue lines:
original magnitude profile in momentum space; red and blue lines with
open circles: momentum space magnitude profile after filtering; black
solid line: cross section of the low-pass filter in momentum space.

the number of rows and the number of columns of the matrix, equal to

γ =
Nout

Nin

=
m2

m1
, (5.1)

with m2 and m1 described in the same way as in our numerical model in Sec-
tion 5.6. When γ = 1, the Marcenko-Pastur density looks like a quarter circle
centered at the origin and extending up to a maximum singular value of 2. As
γ increases, the shape of Marcenko-Pastur curve becomes more elliptical and
narrower (see Chapter 2). In the limiting case of γ → ∞, the Marcenko-Pastur
curve becomes a delta function centered at 1.

Here, we compare all of our experimentally observed histograms to Marcenko-
Pastur densities with the aspect ratios γ determined by the number of accessible
incident and outgoing modes in our setup. Therefore, γ is not a freely adjustable
parameter and has the value γ = 2 for the thick sample and γ = 1.87 for the thin
sample.

5.4.1. Thick sample

As seen in Fig. 5.9 (b), the fields transmitted through the thick sample have a
pedestal and a bright center region on top of this pedestal in momentum space.
In order to have a well-defined field distribution in momentum space independent
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Figure 5.10.: Average intensities of 313 fields transmitted through 6 µm thick layer
of GaP nanowires. (a), (b) H and V polarized incident fields.

of the presence of an air gap between the nanowires and the glass slide, we apply
a low-pass filter in momentum space to each measured field. The momentum-
space density map of rms fields obtained after applying a low-pass filter is shown
in Fig. 5.9 (a). A disk-shaped bright region is seen. The rms field modulus drops
to half of its maximum value at kx = 1 and ky = 0.95. The cross-section of the
disk in Fig. 5.9 (a) is shown in Fig. 5.9 (b), along with the cross-section of the
applied filter. It is seen that the low intensity pedestal is removed after applying
the low-pass filter.
After filtering in momentum space, the fields are inverse Fourier transformed

into real space to form the transmission matrix. We choose a field of view in real
space, and consider the fields that stay within the field of view. In order not to
accumulate unnecessary CCD detection noise while keeping a reasonable amount
of intensity within the field of view, we choose a field of view that has a width
equal to the full width at half maximum (FWHM) of the total intensity pattern
of all detected fields. The total intensity pattern and the corresponding field of
view for a dataset is shown in Fig. 5.10. The total intensity map is bright in
the center and gets dimmer towards the edges due to diffusion. The nanowires
that are stuck on the glass are clearly seen as the shadows in the intensity map.
The field of view is indicated by a black square in Fig. 5.10 and has a width of
13.9 µm.
The singular value histogram of T̃ is shown in Fig. 5.11. Its normalized

singular values are observed to lie between 0.04 and 2.3. The singular value
histogram is asymmetric with its peak at 0.49+0.06

−0.05.
5 To test whether the ob-

served singular value histogram is consistent with an uncorrelated random ma-
trix, the experimentally obtained singular value histogram is compared with the
Marcenko-Pastur density [40], taking into account the dimensions determined by

5A 5th order polynomial is fitted to several bins with highest counts. The peak is determined
as the peak of the fitted function. The error margin in peak position is taken as the abscissa
corresponding to ordinates with a value within a σ from the peak value. σ is the average
standard deviation in the experimental histogram. The same procedure is applied for all
histograms in this chapter.
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Figure 5.11.: Normalized singular value histogram of the transmission matrix of the
thick sample, normalization factor=

√
⟨τ2⟩. Black dots: mean values,

errorbars: standard deviation of the normalized counts in the singular
value histograms of three different transmission matrices. Solid curve:
Marcenko-Pastur density, with γ = 2.

the number of accessible incident and outgoing modes in our experimental setup.
The Marcenko-Pastur density lies between τ = 0.29 and τ = 1.7 and has the
shape of a distorted ellipse. It is seen that the experimentally obtained singular
value histogram deviates strongly from the Marcenko-Pastur density in terms of
its width and shape. The experimental histogram has a sharper peak and to the
right of the peak, the histogram initially has a fast decrease in the histogram
bin counts that later becomes a slow decreasing tail extending up to a singular
value of 2.3, whereas the Marcenko-Pastur density has a slow decrease around the
peak, that becomes a sharp decrease at high singular values. This deviation is an
experimental evidence of correlations in an optical transmission matrix, which is
reported here for the first time.

5.4.2. Thin sample

In order to be consistent with the analysis of the thick sample data we apply the
same filter that is applied to the fields transmitted through 6 µm thick sample.
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Figure 5.12.: (a) Momentum-space density map of root mean square fields,√
⟨|E(k)|2⟩ transmitted through the 1.6 µm thick layer of GaP

nanowires after being filtered in momentum space. (b) Cross sections of
the image in (a) along x- (blue curve) and y- (red curve) directions.

Applying this filter also removes the small artifact that is observed between
kx,y = k0 and kx,y = 1.5k0.

In Fig. 5.12, we show the momentum-space density map of fields transmitted
through the thin sample after the low-pass filter is applied. A bright disk with a
sharp cut-off is seen in the density map shown in Fig. 5.12 (a). The cross-section
of the density map is shown along the x- and y-directions in Fig. 5.12 (b); a sharp
cut-off is seen in both directions. As can be seen from comparison of Fig. 5.5
with Fig. 5.12, the filtering only removes the small pedestal and does not affect
the momentum space profile of the transmitted fields.

In Fig. 5.13, the average intensities of detected fields are shown. Similar to
the procedure followed for the thick sample, an area that has boundaries at
the FWHM of the average intensity of all detected fields is determined and is
indicated by the black square. In this case, it has a width of 12.4 µm. The incident
fields are scanned in the same manner as the 6 µm thick sample measurements.
Since the sample is only ≈1.6 µm thick the square shape of the area over which
the incident fields are scanned is distinguishable.

In Fig. 5.14, we show the normalized singular value histogram of the thin
sample transmission matrix. In this case, the results are obtained from a single
data set, since the other datasets were later found to be measured under unstable
conditions, although they show very similar results. The experimentally obtained
singular value histogram is compared with the Marcenko-Pastur density. The
experimental singular value histogram is found to lie between the histogram bins
of 0.07 and 1.97, whereas the Marcenko-Pastur density lies between the singular
values of 0.27 and 1.73. The shape of both histograms are similar around the
peak, with a slow decrease to the right of the peak and a fast decrease to the left of
the peak. There are discrepancies between the two histograms at the high and low
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Figure 5.13.: Average intensities of 625 fields transmitted through 1.6 µm thick layer
of GaP nanowires. (a), (b) H and V polarized incident fields
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Figure 5.14.: Black dots: Normalized singular value histogram of the transmission
matrix of the thin sample, normalized by

√
⟨τ2⟩. Solid curve: Marcenko-

Pastur density, with γ = 1.86.

end of the histograms, with the experimental histogram showing a wider spread
of the singular values. The discrepancies are small compared to the discrepancies
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observed in the case of the thick sample. It is seen that the measured transmission
matrix of the thin sample is approximately an uncorrelated random matrix.
From a comparison of the thick and thin sample data, we observe that the

singular value histograms obtained from the transmission matrices of the two
samples are considerably different. The 6-µm thick sample shows pronounced
correlations, whereas correlations are not evident in the transmission matrices of
the thin sample. This confirms our expectations that the thick, strongly scatter-
ing sample has only a small number of open transmission eigenchannels, whereas
the thin sample has more open transmission eigenchannels and displays less cor-
relations.

5.5. Model

It is seen that the Marcenko-Pastur theory cannot be used to describe transport
through the thick nanowire sample. Therefore, we have developed a new model
that we use to predict the singular value histograms to be observed from the
transmission matrix measurements of our samples. In this model, we assume a
DMPK probability density function (see Chapter 2) [1, 41, 42] for the transmis-
sion coefficients of the transmission eigenchannels. The singular value density of
the model transmission matrix is modified by experimental conditions such as
limited information access, noise and field generation limitations.
Forming the model transmission matrix consists of three steps:

Step 1: We model the ideal transmission matrix for assumed sample param-
eters. In our model, we start by generating matrices of size N by N, having
singular value densities as obtained from the bimodal probability density func-
tion predicted by Dorokhov [41]. The size of the matrix is chosen to be N=8000
by 8000 in order to use a large matrix while keeping computational constraints
in mind. The material parameters enter the model through the average trans-
mission, which is expressed in diffusion theory as

⟨T ⟩ = zinj + ze1
L+ ze1 + ze2

. (5.2)

Here, zinj is the diffuse injection depth (see Chapter 2), ze1 and ze2 are the
extrapolation lengths on incident and exit facets of the sample [43, 44]. When a
plane wave is incident on a slab zinj = ltr [45, 46]. In our case, light is focused
on the front surface of the sample, with a 0.6 NA objective. In this case, zinj can
still be approximated to be equal to ltr, giving a total transmission

⟨T ⟩ = ltr + ze1
L+ ze1 + ze2

. (5.3)

The description of the sample is simplified to a waveguide geometry with no
loss. In reality, the sample has a slab geometry, so the fields are not confined in
the lateral dimensions. Unfortunately there is presently no theory that permits
us to incorporate exactly the effects of this lateral spreading. Still, we see that
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modeling the sample as a waveguide is accurate enough to model our experiments.
The cross-sectional width of this waveguide is taken as the average of the widths
of the probed area on the incident surface of the sample and the area covered by
the FWHM of the diffuse light.

Step 2: We take into account the limited access to the full transmission matrix
of a sample in an experimental setup. The DMPK theory describes the singular
value density of the full transmission matrix of the sample, however, it is well
known that a partial matrix has a different singular value density [47, 48]. Due
to the limited numerical apertures of our optics and the sampling density we
use in the experiment, we effectively have access to only a part of the matrix.
We model this limited information access by cropping the transmission matrix
generated at the end of step 1. The columns of the transmission matrix represent
different detected fields in response to different incident fields. Their number is
determined by how many incident fields we send to our sample. Since the number
of incident fields that are used in the experiment is smaller than the number of
transmission eigenchannels, we need to reduce the number of columns of the
model transmission matrix that is obtained at the end of step 1 by multiplying
it by “m1”

m1 = Nin/Nchannels, (5.4)

where, Nin is the number of incident fields in an experiment and Nchannels is
the number of transmission eigenchannels of the waveguide that is used as the
representation of our slab-type sample. Nchannels is found using [2]

Nchannels =
2πAn2

eff

λ2
, (5.5)

where, A is the area of the waveguide, λ is the free space wavelength, neff effective
refractive index of the scattering sample. The factor of 2 accounts for two orthog-
onal polarizations. On the exit side, the number of modes that can be detected
is determined by the detection numerical aperture. As shown in Section 5.4, the
detection numerical aperture, NAdet = 1. In this case, the number of modes that
can be detected, Ndet is

Ndet =
πANA2

det

λ2
. (5.6)

The factor of 2 is not applied in Ndet since the detection is performed for single
polarization. In the model, we reduce the number of rows by multiplying the
initial number of rows by m2,

m2 = Ndet/Nchannels,

m2 = NA2
det/2n

2
eff . (5.7)

Step 3: In the third step, we consider other experimental factors than cropping
that deviate from an ideal case. For example, the generated incident fields may
be oversampling the probed area. Also in an experiment there is noise. In
order to account for these effects, we multiply the matrix that we obtained at
the end of step 2 by a matrix M0 that has the same singular value histogram
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as T̃0, as is explained in Section 5.3. Effects of the overlap between different
incident fields and the multiplicative noise, due to fluctuations in laser power,
varying diffraction efficiency of the SLM for different phase gradients and the
fluctuations in the coherence length in the laser output are included in the model
via multiplication by M0. Additive detection noise is found to be small compared
to the multiplicative noise component and is therefore not included in the model.
The described approach allows us to generate singular value histograms that

include the basic physical effects as well as the characteristics of our measurement
apparatus. The results of the model can be compared directly to the experimental
results. Now we investigate the result of the model for an a priori likely choice
of parameters ltr = 0.3 µm and neff = 2.25. For this effective refractive index,
the extrapolation lengths on incident and exit sides of the sample are [44],6

ze1 = 0.78ltr (5.8)

ze2 = 7.39ltr (5.9)

The long extrapolation length on the exit side of the medium results from the
high contrast between the effective refractive index of the nanowire layer and air.
Similarly high extrapolation lengths have been reported before for the porous
GaP samples [33, 49]. The average transmission ⟨T ⟩, in turn, is calculated to
be 6.3%. Taking into account the filtered momentum space distribution cropped
to k = k0 in the detection procedure, the cropping ratio of the matrix on the
detection side becomes

m2 =
1

2
(1/2.252)

= 0.1 (5.10)

In order to find the cropping ratio on the incident side, m1, we consider the area
probed by the incident spots, i.e., (12 µm)2 and the area that the diffuse spot
extends to on the rear side of the sample, which, using diffusion theory, is found
to be (13.6 µm)2 at full width at half maximum of the intensity. The area of
the waveguide that models our sample is then taken to be (12.8 µm)2. Such a
waveguide with neff = 2.25 has 13000 modes. We probe 626 modes out of 13000
modes, so we find that m1=0.05.
In Fig. 5.15, the singular value histograms obtained from the model are com-

pared to the experiments. Both the model and the experimental histograms are
asymmetric in shape with a sharp rise at low singular values to reach a peak
at a singular value of 0.40+0.09

−0.06 for the model, in good agreement with 0.49+0.11
−0.08

for the experiment. After the peak, both histograms decrease in a slightly con-
cave manner, with the experimental histogram having a higher slope, and reach
zero counts after the histogram bin centered at τ=2.3. It is also seen that bin

6The extrapolation lengths depend on the relative refractive indices of the sample and the
media in its surroundings. Here, GaP is the medium on incident side, determining ze1 and
air is the medium on the exit side, determining ze2.
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Figure 5.15.: Normalized singular value histograms obtained from the model and the
experiment. Black dots: mean values, black errorbars: standard devia-
tion of the normalized bin counts in 3 experimental singular value his-
tograms. Red squares: mean values, red errorbars: standard deviation
of the normalized bin counts in singular value histograms obtained from
20 runs of the model with independently generated random matrices.

counts around the peak is lower in the model histogram compared to the ex-
perimental histogram. The good agreement of the model and the data clearly
shows the model captures the essential physics and that slab geometry samples
are within reach of being modeled using DMPK theory. This observation, agrees
with Nazarov’s work [50], and it is remarkable as light propagation in slabs can
be quite different from the waveguides that DMPK theory was developed for.

5.6. Retrieving sample parameters by comparing the
model and the experiment

We have shown in Section 5.4 that the thick sample transmission matrix dis-
played correlations. Now, we focus our attention on whether we can retrieve
information about the thick sample that is studied and what type of information
we can retrieve. We aim to retrieve the sample parameters by comparing the sin-
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gular value histograms obtained from our model to the singular value histograms
obtained from the experiments. In this section, we explain how we make this
comparison and discuss the sample parameters that we retrieve.
In order to retrieve sample parameters from our measurements, we make a

fit of the mean singular value histogram obtained from the model to the mean
experimental singular value histogram, using ltr and neff as free parameters in
the model. First, a large number of singular value histograms are calculated by
varying the parameters ⟨T ⟩ between 0.025 and 0.083 and neff between 1.5 and
3.1. Then, we compare the numerically and experimentally obtained singular
value histograms using a χ2 goodness of fit metric, defined as

χ2 =
M∑

k=k′

|H1(k)−H2(k)|2

H1(k) + H2(k) + ε
, (5.11)

with k the histogram bin index; k′ the histogram bin index of the bin with
maximum counts, M the total number of histogram bins [51]. H1(k) is the number
of counts in the kth numerical histogram bin; H2(k) is the number of counts in kth

experimental histogram bin. ε is a small number included to provide numerical
stability. The low singular values that lie to the left of the peak in the histogram
are not taken into account as this part of the histogram is found to be extremely
sensitive to detection noise. In simulations we have observed that adding noise
to a transmission matrix drastically modifies this flank, but has much less effect
on the rest of the histogram (see Chapter 4).
We show the obtained χ2 values in Fig. 5.16 as a function of the neff and

⟨T ⟩ values used in the model. Lighter colors indicate lower χ2 and thus a bet-
ter fit to the model. The white region is where the minimum goodness of fit
χ2 is expected.7 The region of minimum χ2 is observed to be a diagonal val-
ley running from high transmission and low effective index to low transmission
and high effective index. The goodness of fit metric χ2 rises sharply when one
moves perpendicular to this valley, but varies only little along its length. This
valley tracks approximately constant kltr lines. While we can not retrieve ltr and
neff independently, we can retrieve the product kltr, which is the dimensionless
scattering strength.
In Fig. 5.17, the experimental singular value histograms are compared to the

numerical singular value histograms for the a priori estimates ltr = 0.3 µm and
neff = 2.25 and ltr = 0.33 µm and neff = 2.95. The singular value histogram
obtained for the parameters of ltr = 0.33 µm and neff = 2.95 corresponds to
the point of lowest χ2 between the experimental and numerical singular value
histograms. One can observe that in the region of low singular values the experi-
mental histogram is influenced by noise, which is not included in the model. The
noise causes a depletion of low singular values, and an increase in their density
near the peak. In the right flank of the histogram both model curves agree qual-
itatively with the data, where the best fit curve obviously reproduces the shape

7Within 3σ from the minimum χ2 as obtained from comparison of average experimental and
numerical histograms. σ is the standard deviation of minimum χ2 as obtained from the
comparison of each model histogram with the average experimental histogram.
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Figure 5.16.: Map of χ2, the distance metric between the numerical model and the
experimental data, as a function of the parameters ⟨T ⟩ and neff . The
white region corresponds to the best agreement between experiment and
the model. Red line: kltr =10.2 curve.

of the experimental histogram a bit better.

While neff > 2.3 is not physical for the sample under study given the estimated
filling fraction8, we keep neff > 2.3 in the determination of kltr since we assume
the filling fraction and ltr are a priori unknown. In the region of best agreement
between the model and experiment, kltr is found to vary between 7.4 and 16.8,
and its mean is found to be 10.5. To estimate an upperbound for the error in
retrieved kltr, we assume all values between minimum and maximum kltr found
in the white region and derive kltr = 10.5+6.3

−3.1. This errorbar is the statistical
error of different model outcomes. Apart from this error we take into account
other uncertainties:

1. The uncertainty in the thickness of the sample. The sample thickness is
6±0.5 µm, the uncertainty thus contributes about 8% error to kltr.

2. Mapping the slab transmission matrix to a waveguide model introduces a

8neff was estimated to be between 1.5 and 2.3.
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Figure 5.17.: Normalized singular value histograms obtained from the model and the
experiment. Black dots: mean values, black errorbars: standard de-
viation of the normalized bin counts in 3 experimental singular value
histograms. Red squares: model with ltr=0.3 µm and neff = 2.25. Blue
squares: model with ltr=0.33 µm and neff = 2.95. Model curves are av-
erages over 20 independent runs. The standard deviation of the model
curves is similar to that of the experiment, for clarity the model is shown
without error bars.

systematic uncertainty as the effective width of the waveguide can be chosen
between the size scanned by the input fields and the FWHM area filled by all
output spots. We take the average area, leaving an uncertainty in the effective
waveguide area of 13%. This is expected to lead to an error of the same order in
the number of open transmission eigenchannels, and therefore in kltr. In order to
find a conservative total error estimate on kltr, we assume a symmetric error of
39% obtained from the fitting procedure. The total error is found by quadratically
adding the statistical error contributions due to sample thickness and fitting, and
subsequently directly adding the systematic error due to the waveguide width.
We find that a conservative estimate for the total error in kltr is about 50%

While the obtained value of kltr is slightly higher, it is in the same range as the
kltr values that we estimated from backscatter measurements and estimations of
the effective index. The total error estimate on our determination of kltr is about
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50%, which is good compared to other methods of determining this value.

5.7. Conclusions

In this chapter, we have described our experimental study on the transmission
matrices of strongly scattering random photonic nanowire ensembles. We observe
that the singular value histogram of the 6 µm thick nanowire ensemble indicates
presence of correlations in the measured matrices. This is the first report of cor-
relations in measured transmission matrices of such strongly scattering samples
at optical wavelengths [52]. Using a numerical model, along with estimated sam-
ple parameters of ltr and neff , we model the singular value histograms and find
good agreement with experimental histograms.

By using the a priori uncertain sample parameters as fit parameters we retrieve
the dimensionless scattering strength, kltr of the 6 µm thick nanowire ensemble.
This is the first quantitative retrieval of sample parameters from a measured
transmission matrix. Our result for kltr is consistent with prior estimates. The
uncertainty in the retrieved scattering strength is ±50% which compares well
with other methods. Remarkably, the most promising way to further reduce
uncertainty is to improve the theoretical modeling.
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CHAPTER 6

Transmission Matrices of Strongly Scattering

Random Photonic Nanoparticle Media

6.1. Introduction

The optical transmission matrix is a matrix representation of the transmission
operator through a sample, written in a pre-defined basis. It describes how the
fields incident on and transmitted through the sample are related. Direct mea-
surements of the optical transmission matrices of scattering samples have been
reported by several groups [1–5]. In these studies, knowledge of the transmission
matrix was used to focus through [1], send an image through [2], enhance the
transmission through [5] the scattering sample and increase the resolution of the
imaging system made from a random medium [3, 4].

In this chapter, we describe measurements of the transmission matrices of
strongly scattering random photonic media composed of ZnO nanoparticles. Sim-
ilar samples have been used in many experiments [3–8] and have been character-
ized very well. The geometry of the samples enables good optical access during
transmission matrix measurements, thus allowing measurement of large parts of
the transmission matrix. When measurement of a large part of the transmission
matrix is combined with the sufficiently strong scattering of the random pho-
tonic medium, mesoscopic correlations are expected to show up in the measured
transmission matrices but have not been reported before [9]. The first motiva-
tion of this chapter is thus to observe mesoscopic correlations in the transmis-
sion matrices of strongly scattering random photonic media composed of ZnO
nanoparticles. Our second motivation is to compare the experimental results to
a numerical model developed by us and to an analytical model developed by
Goetschy and Stone [10] to interpret our measurements.

In Section 6.2, the ZnO samples are described. The experimental procedure is
described in Section 6.3 and the results are shown in Section 6.4. A comparison
of the experimental and numerical results is given in Section 6.5. Finally, the
experimental results are compared to the predictions of an analytical theory [10]
in Section 6.6.
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6.2. Samples

In this chapter, measurements are performed on two samples of different thick-
ness. Both samples are layers of ZnO nanoparticles in air. The samples were
prepared by Elbert van Putten using a method described in detail in Ref. [11].
The ZnO powder that is used is a commercial powder with average grain size
of 200 nm (Sigma Aldrich ZnO < 1 µm 99.9%). Samples prepared according to
similar procedures have a transport mean free path of ltr=0.7±0.2 µm and an
effective refractive index of neff=1.4±0.1 in Ref. [8] and ltr = 0.63+0.17

−0.11 µm and
neff = 1.4± 0.06 in Ref. [11].

(a) (b)

L

Figure 6.1.: (a) Schematic of a layer of ZnO nanoparticles in air sprayed on a glass sub-
strate, with the scanning electron microscope (SEM) picture of a typical
layer shown in the inset. L:thickness of layer. (b) Photograph of a typical
sample. SEM image and the photograph taken from Reference [12].

In Fig. 6.1 (a) the schematic of the random photonic medium, composed of
ZnO nanoparticles in air is shown. The thickness L of the layers used in this
chapter are 11±1 µm and 31±6 µm, measured under an optical microscope using
a scratch made in the nanoparticle layer1. The glass substrate is a standard
microscope cover glass and has a thickness of nominally 170 µm. A SEM picture
of the layer of nanoparticles in air is shown in the inset of Fig. 6.1 (a). It is seen
that the layer is porous and there is good contact between the glass slide and
ZnO nanoparticles. From Fig. 6.1 (b), it is seen that the samples completely hide
a pattern behind them. They are optically thick and fully opaque.

In Fig. 6.2, the root mean square (rms) fields transmitted through both the
thin and the thick samples are shown as density plots in momentum space. The
momentum space maps of the two samples are almost identical where the trans-
mitted fields approximately fill a disk in momentum space with an effective de-
tection numerical aperture (NA) extending up to 1.3 in the x-direction and up to
1.2 in the y-direction at the half maximum of the rms field.

Besides being strongly scattering samples, layers of ZnO nanoparticles in air
are chosen because of relatively low effective refractive indices and direct access
to the front and rear surfaces of the sample. SEM images and rms field density

1From this point on, the 11-µm thick sample is called the “thin sample” and the 31-µm thick
sample the “thick sample”.
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plots in momentum space indicate good contact between the samples and the
glass substrate. In combination of all these properties, these samples provide an
excellent system for transmission matrix experiments.
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Figure 6.2.: (a, c) Momentum-space density map of root mean square fields,√
⟨|E(k)|2⟩ transmitted through the 11-µm and 30-µm thick layer of ZnO

nanoparticles on glass. (b, d) Cross sections of the images in (a, d) along
x- (blue curve) and y- (red curve) directions. The illumination NA is 0.95.

6.3. Experimental method

The experimental setup is shown in Fig. 6.3. It is identical to the setup used
for transmission matrix measurements of GaP nanowire layers as explained in
Chapter 5, except for the illumination objective. In the case of ZnO nanopar-
ticle layers, the sample geometry allows us to use a high NA objective on both
illumination and detection sides. On the illumination side, a Zeiss objective with
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H
eN

e

BS

BS

SLM

objective 1

CCD

P

reference

BS

objective 2 L

mirror

HWP

ZnO

407 nm

Figure 6.3.: Experimental setup. HeNe: laser. BS: 50:50 beam splitter. SLM: phase-
only spatial light modulator. HWP: half-wave plate. ZnO: sample. Ob-
jective 1: 63× 0.95-NA objective. Objective 2: 60× 1.42-NA oil immersion
objective. L: 500 mm focal length lens. P: polarizer. CCD: camera sensor.

63× magnification and NA=0.95 is used and on the detection side, an Olym-
pus oil-immersion objective with 60× magnification and NA=1.42 is used. The
FWHM of the spot focused on the front surface of the sample is ≈390 nm. In this
case, the overlap between different incident fields is found to be small so that the
probed area could be sampled in a dense way, as shown in the inset in Fig. 6.3.
When dense sampling is performed, the distance between the centers of two near-
est neighbor incident spots on the sample surface is 407±19 nm, corresponding
to 0.64λ±0.03λ. In section 6.4, we also provide the results of analyses when a
checkerboard filtering is applied to the positions of incident spots. In that case,
the distance between two nearest neighboring spots becomes 576±27 nm, cor-
responding to 0.91λ±0.04λ. Throughout the chapter, the sampling made when
checkerboard filter is applied is called the sparse sampling. In both cases, the
incident spots are scanned over an area of 10.2 µm by 10.2 µm.

The matrix T̃ that is obtained from a transmission matrix experiment is related
to the transmission matrix of the ZnO layer T by T̃ = T2TT0. T2 is the matrix
that maps the fields at the rear surface of the sample to the detected fields, and
T0 is the matrix constructed by the fields at the incident surface of the sample. To
quantify how much T̃ differs from T , we measure a reference matrix T̃0 = T2T0

through a bare glass slide. We thus investigate how much the singular value
histogram of the reference glass slide deviates from the singular value density of
a unitary matrix, which is a single peak at the singular value 1. The singular value
histogram of T̃0 matrix is used in the numerical model to include the experimental
sampling condition and the multiplicative noise.
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Figure 6.4.: Transmission singular value histogram of the reference glass slide, as nor-
malized by

√
⟨τ2⟩. Black dots: measured singular values.

The normalized singular value histogram of the reference glass transmission
matrix T̃0 is shown in Fig. 6.4. The normalized2 histogram has a peak centered
at the singular value of 0.89 and a full width at half maximum of 0.29. A small
peak at a histogram bin centered at the singular value of 0.17 is observed. This
can be due to overlap between the incident fields. Two isolated singular values
are observed at 3.46 and 9.91 (not shown)3. These isolated high singular values
are attributed to fields that are present as an offset in all recorded fields such
as a small reflection from the front window of the SLM. These spurious singular
values are observed in all measurements and are not shown from this point on,
as they decouple from the rest of the singular values.
As we also observed, it is not possible to measure a unitary transmission matrix

in an optical experiment first of all due to the fundamental limitation that fields
with limited spread in momentum space do not form a complete basis in a finite
area (see Chapter 4). Moreover, other experimental factors such as detection

2In all singular value histograms presented in this chapter, the normalization is done to make√
⟨τ2⟩ = 1 as is usually performed when an a priori normalization is not available.

3The spurious singular values are included in the normalization. When they are excluded
from the normalization, the peak of the histogram is found to be at singular value of 1. In
the rest of the chapter, their effect on the shape of the histograms is found to be negligible.
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noise, fluctuations in the focussed spot intensity and spatial overlap between
incident spots broaden the peak in the singular value histogram.

6.4. Results

In this section, we present the results of transmission matrix measurements per-
formed on both samples. We study the singular value histograms of the measured
transmission matrices and as a first test, compare the obtained histograms to the
Marcenko-Pastur singular value density [13]. The Marcenko-Pastur theory gives
the singular value density of an uncorrelated random matrix. The minimum and
maximum singular values and the shape of the singular value density plot only
depend on the aspect ratio γ of the number of rows to the number of columns of
the matrix (see Chapters 2 and 5). The aspect ratio γ is not a free parameter,
but it is fixed as the ratio of accessible incident and outgoing modes in our setup,

γ =
Nout

Nin

=
m2

m1
, (6.1)

with m2 and m1 described in the same way as in our numerical model in Sec-
tion 6.5. We observe deviations from Marcenko-Pastur curves. This deviation is
an indication for correlations being present in the experimental data.

The experimental procedure is the same for the thin and the thick samples,
and their results are presented together. The thickness of the thin sample is
comparable to the side length of the area over which the incident free modes are
scanned. Taking into account the reported range for the ltr and neff parameters [8,
11], we estimate the number of open transmission eigenchannels to be between
170 and 415 in our experiments on the thin sample.4 For the thick sample, we
expect this number to be between 180 and 440, which is very similar to the case of
the thin sample.5 The number of pairs of independent incident fields and fields
detected in our transmission matrix measurements is larger than the number
of estimated open transmission eigenchannels for both samples. In light of the
above arguments, we expect to observe similar results with clear signatures of
correlations in the transmission matrices of both samples.

In Fig. 6.5 (a) and (b) average intensities of the fields transmitted through
the thin and thick ZnO layer are shown for incident horizontal polarization,
respectively. The average intensity profile is roughly circular in both cases and
displays a granular structure, due to a shadowing effect of ZnO nanoparticles on
glass. In Fig. 6.5 (a) the average intensity covers a smaller area on the detector
as the sample is thinner and the diffuse spreading is less as compared to Fig. 6.5
(b). The black squares in Fig. 6.5 (a) and (b) reside at the position where the
average transmitted intensity drops to about half of its peak value. The 14-µm

4The thin sample is modeled as a waveguide 12.1-µm wide and 11.25-µm long, see Sec. 6.5
and Sec. 6.6

5The thick sample is modeled as a waveguide 20.6-µm wide and 30.7-µm long, see Sec. 6.6
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Figure 6.5.: Average intensities of 625 fields transmitted through (a) 11-µm thick and
(b) 31-µm thick layer of ZnO.

wide region inside the black square in Fig. 6.5 (a) and the 31-µm wide region
inside the black square in Fig. 6.5 (b) are used as the detection field of view
during data analysis of the thin and thick samples, respectively.

In Fig. 6.6, we show the normalized singular value histograms of (a) thin and
(b) thick ZnO layer in the sparse sampling case. The histogram is highly asym-
metric in both Fig. 6.6 (a) and (b), it shows a sharp rise at the low singular
values and decays almost linearly. In Fig. 6.6 (a), the obtained singular values
lie between 0.28 and 2.00, the peak of the histogram is observed at 0.46+0.05

−0.04.
6

In Fig. 6.6 (b) the singular values lie between 0.34 and 1.90 and the peak of
the singular value histogram is at 0.57+0.11

−0.08. We show the Marcenko-Pastur sin-
gular value density alongside the experimental histogram. In Fig. 6.6 (a), the
Marcenko-Pastur singular value density lies between τ = 0.47 and τ = 1.53, and
in Fig. 6.6 (b), it lies between τ = 0.69 and τ = 1.31, with a sharp peak at
τ = 0.95. Its shape is less asymmetric than the experimental results, the peak
occurs at a higher singular value, and the width is narrower. Since the model
for an uncorrelated random matrix is completely different from the experimental
histogram, it is concluded that the measured fields are correlated.

In Fig. 6.7, the singular value histogram measured with the dense sampling
of incident fields is shown for (a) the thick and (b) the thin sample. Here the
full dataset of 1250 fields is used without applying the checkerboard filter. In
both cases, the experimental singular value histogram is highly asymmetric. The
overall shape of the experimental singular value histograms look similar, however,
there are some small discrepancies. The singular values of the thin sample, shown
in Fig. 6.7 (a) are slightly more spread and lie between singular values of 0.09

6A 5th order polynomial is fitted to several bins with highest counts. The peak is determined
as the peak of the fitted function. The error margin in peak position is taken as the abscissa
corresponding to ordinates with a value within a σ from the peak value. σ is the average
standard deviation in the normalized bin counts. The same procedure is applied for all
histograms in this chapter.
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(a) (b)

Figure 6.6.: Normalized singular value histogram of the transmission matrix of (a)
thin sample, (b) thick sample in the case of sparse sampling, normaliza-

tion factor=
√

⟨τ2⟩. Black dots: mean values, errorbars: standard devi-
ation of the normalized counts in the singular value histograms of three
different transmission matrices. Solid curve: Marcenko-Pastur singular
value density with (a) γ = 3.57, (b) γ = 10.4.

and 2.46 with a sharp peak at 0.25+0.04
−0.02, whereas the singular values of the thick

sample, shown in Fig. 6.7 (b) lie between 0.04 and 2.30 with a peak at 0.38+0.1
−0.07.

In Fig. 6.7 (a), the Marcenko-Pastur singular value density extends between the
singular values of 0.25 and 1.75 and resembles a distorted semi-ellipse and in
Fig. 6.7 (b), the Marcenko-Pastur curve lies between τ = 0.56 and τ = 1.44, and
looks like a semi-ellipse with a peak at τ = 0.9. In both cases, the Marcenko-
Pastur singular value density shows a strong disagreement with the experimental
singular value histograms regarding peak position, width and shape. The fact
that we see a continuous spread of experimental singular values at τ > 2, which
is impossible for the Marcenko-Pastur curves demonstrates that there are strong
correlations in the transmission matrices.

Interestingly, it is found that the random photonic samples of ZnO nanopar-
ticles in air are expected to have on the same order of and even slightly smaller
number of open transmission eigenchannels as compared to the random photonic
nanowire mats that were described in the previous chapter. This is surprising
since the ltr of the nanowire mats is smaller as compared to that of the layers
of ZnO nanoparticles, so that the nanowire mat of 6 µm thickness has a smaller
average transmission ⟨T ⟩ than the 11 µm thick layer of ZnO nanoparticles. This
puzzle can be solved by considering that when we investigate a certain area of the
sample, the sample with the higher neff supports more transmission eigenchan-
nels Nchannels as compared to the sample with lower neff . This leads to a lower
number of estimated open transmission eigenchannels Nopen ≈ Nchannels⟨T ⟩ for
the sample with the low neff , even if it has a larger ⟨T ⟩.
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(a) (b)

Figure 6.7.: Normalized singular value histograms of the transmission matrix of (a)
thin sample, (b) thick sample in the case of dense sampling, normaliza-

tion factor=
√

⟨τ2⟩. Black dots: mean, errorbars: standard deviation of
the normalized counts in the singular value histograms of three differ-
ent transmission matrices. Solid curve: Marcenko-Pastur singular value
density with (a) γ = 1.79, (b) γ = 5.2.

It must be kept in mind that we have slab type samples that we model as
waveguides. In a slab, there is no lateral confinement for the light. For the
thick sample, there is a considerable mismatch between the probed area (10.2 µm
width) and the thickness of the sample (30.7 µm), and in turn, with the detection
field of view (31 µm width). Intuitively, one can appreciate that the number of
outgoing modes in the detection field of view is much larger than the number of
modes incident to the probed area. Since only a small fraction of the transmission
matrix that describes the detection area is probed, one would expect reduced
correlations in the transmission matrix of the thick sample, despite the small
number of open transmission eigenchannels predicted when the sample is modeled
as a waveguide. Our results show that the transmission matrices of the thick
sample have similar properties as the transmission matrices of the thin samples,
and both show correlations. Therefore we conclude that modeling the samples
as waveguides is appropriate even for the thick sample.

6.5. Comparison to numerical model

In this section, we describe the singular value histograms of the thin sample as
predicted by a numerical model that we developed. In summary, this model gives
the singular value histogram of a transmission matrix that is measured partially.
Experimental noise and oversampling of the incident fields are also included in
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the model. A more detailed description of this model is given in Chapter 5.7

The model simplifies the slab-type geometry of the sample to that of a wave-
guide, and takes effective refractive index, neff , average transmission, ⟨T ⟩, m1 and
m2 as input parameters. It gives the singular values of the partial transmission
matrix as output. Here m1 is the ratio of number of fields incident on the
sample Nin to the total number of transmission eigenchannels Nchannels of the
model waveguide, and m2 is the ratio of detectable outgoing free modes from
the sample Ndet to the total number of transmission eigenchannels of the model
waveguide Nchannels

m1 =
Nin

Nchannels
, (6.2)

with

Nchannels =
2πAn2

eff

λ2
. (6.3)

Here, λ is the free space wavelength and A is the area of the waveguide taken as
the algebraic average of the width of the area scanned by incident fields and the
width of detection field of view. In our case A = (12.1 µm)2 for the thin sample.

For the detection side,

m2 =
NA2

det

2n2
eff

. (6.4)

where NAdet = 1.4 is the detection numerical aperture. The factor of 1/2 is
included since the detection is made with a single polarization.

We now provide the result of the model for ltr = 0.65 µm and neff = 1.4. Using
the given parameters and the expression

⟨T ⟩ = zinj + ze1
L+ ze1 + ze2

. (6.5)

Using zinj = 0.87ltr along with extrapolation lengths of ze1 = 1.96ltr and ze2 =
0.68ltr, ⟨T ⟩ = 0.15, m1 = 0.28 and m2 = 0.5 are obtained and used in the model.

In Fig. 6.8, we show the singular value histograms obtained from the experi-
ment and the model. The two curves overlap almost perfectly. Both histograms
show a sharp rise at the low singular values with the peak of the experimental
singular value histogram at 0.25+0.04

−0.02, slightly to the right of the peak of the
model histogram, which is at 0.19± 0.02. The experimental histogram decays to
zero at the singular value of 2.46, whereas the model histogram has no counts
in the histogram bins beyond a singular value of 2.37. The decaying behavior of
the two histograms is qualitatively similar; both show a fast decay near the peak
with a slower decaying tail extending to high singular values. It is also observed
that the experimental histogram has higher counts at the bins around the peak
and has slightly lower counts in the bins between the normalized singular values
of 1 and 2 as compared to the counts in the model histogram.

Next, we run the numerical model for a range of ⟨T ⟩ and neff values to see
the dependance of the obtained histograms on these parameters. The bins cor-
responding to low singular values are more susceptible to noise. For this reason,

7In this chapter the size of the unitary matrices used in Step 1 of the model is 4000 by 4000
instead of 8000 by 8000.
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Figure 6.8.: Normalized singular value histograms obtained from the experiment and
from the model using ltr = 0.65 µm and neff = 1.4, with normalization
factor,

√
⟨τ2⟩. Red dots: mean, red errorbars: standard deviation of

3 experimental singular value histograms. Black squares: mean, black
errorbars: standard deviation of singular value histograms obtained from
20 runs of the model.

the comparison between numerical and experimental histograms is made using
the bins of singular values higher than the bin with the maximum counts in the
experimental histogram. The metric used for comparison is the goodness of fit
χ2 [14]

χ2 =

M∑
k=k′

|H1(k)−H2(k)|2

H1(k) + H2(k) + ε
, (6.6)

where H1(k) is the number of counts in the kth numerical histogram bin; H2(k) is
the number of counts in kth experimental histogram bin, k is the histogram bin
index; k′ is the histogram bin index of the bin with maximum counts, M is the
total number of histogram bins and ε is a small number added to the denominator
for numerical stability.
The map of χ2 obtained for a range of parameters, neff from 1.2 to 1.8 and

⟨T ⟩ from 0.04 to 0.22 is shown in Fig. 6.9. Lighter colors indicate lower values of
χ2, meaning good agreement between experiment and model. We observe that
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Figure 6.9.: Parameter maps for χ2, obtained from comparison of numerical and ex-
perimental singular value histograms. The white region enclosed by black
lines corresponds to the region of best agreement between experiment and
model. The region enclosed by yellow borders correspond to the param-
eters that have been reported before.

the relatively low χ2 values lie in a valley marked by the brown lines. This valley
lies diagonally from neff = 1.2 with ⟨T ⟩ between 0.16 and 0.22 to neff = 1.8 with
⟨T ⟩ between 0.07 and 0.13. The trough of the valley is the white region, enclosed
by black lines. The white region is where minimum χ2 is expected.8 The region
enclosed by yellow borders indicates the region of parameters that were reported
in Ref. [8]. This region resembles a parallelogram and extends from low ⟨T ⟩, 0.1
and low neff , 1.3 to high ⟨T ⟩, 0.21 and high neff , 1.5 and intersects with the valley
we find.

6.6. Comparison to analytical model

In this section, we compare the singular value histograms obtained from our
measurements with the probability density function of singular values predicted

8Within 3σ from the minimum χ2 as obtained from comparison of average experimental and
numerical histograms, σ is the standard deviation of minimum χ2 as obtained from the
comparison of each model histogram with the average experimental histogram.
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by an analytical theory developed by Goetschy and Stone [10].9 The analytical
model is developed to take into account the limited information access to the
sample under study. This is a typical situation in all transmission matrix mea-
surements and prevents the experimenter from observing the full DMPK singular
value density, which has a bimodal shape [15, 16]. The new analytical theory is
developed to account for this effect and to investigate how the DMPK singular
value density is modified as a portion of the full transmission matrix is measured
and analyzed.
The analytical model assumes that the sample has a confined geometry with

well-defined transmission eigenchannels and assumes that a transmission matrix
of this sample is constructed by exciting and detecting a portion of the transmis-
sion eigenchannels. Limited access to the transmission eigenchannels is included
by introducing two new parameters to the DMPK theory. The newly introduced
parameters are the ratio m1 of the number of free modes that are coupled to
the sample to the total number of transmission eigenchannels and the ratio m2

of the number of detectable independent free modes on the detection side to the
total number of transmission eigenchannels, as also described in Section 6.5. The
analytical model also takes the average transmission through the sample ⟨T ⟩ as
an input parameter.
In order to compare the experimental results with the analytical model, we

model the slab geometry sample as a waveguide with area A defined as in Sec-
tion 6.5 and we use neff = 1.4 and ltr = 0.63 µm as the sample parameters.
A = (12.1 µm)2 is assumed for the thin sample and A = (20.6 µm)2 is assumed
for the thick sample.
We calculate m1 using Eq. 6.2. In the case of dense sampling, some of the

incident fields are linear superpositions of others, as inferred by the histograms
of T̃0 matrix shown in Fig. 6.4. Since we can not directly use the reference
T̃0 matrix in the analytical model, we use an effective number of independent
incident fields Ñin instead of Nin to find m1 in the case of dense sampling.10

For the thin sample m1 = 0.27 and m1 = 0.14 for the cases of dense and sparse
sampling respectively. For the thick sample m1 = 0.09 and m1 = 0.05 for the
cases of dense and sparse sampling, respectively. In order to calculate m2, we use
Eq. 6.4. For all four cases described above, m2 = 0.5. Finally, ⟨T ⟩ is calculated
using Eq. 6.5 and is found to be ⟨T ⟩ = 0.14 for the thin sample and ⟨T ⟩ = 0.06
for the thick sample.
In Fig. 6.10, the experimental singular value histogram of the thin and the

thick sample when the incident fields are densely sampled is shown along with
the singular value density obtained from analytical theory. In Fig. 6.10 (a) the
analytical singular value density is non-zero between singular values of 0.10 and
2.19 and the experimental singular value histogram has counts starting from
the bin centered at the singular value of 0.09. Both curves have a sharp peak;
for the analytical singular value density the peak is at a singular value of 0.18,
whereas the experimental singular value histogram has a peak between 0.25+0.04

−0.02.

9Using a code kindly provided by Arthur Goetschy.
10We take Ñin equal to the number of singular values of T̃0 larger than 0.3, where the value of

0.3 is chosen to avoid the peak at low singular values.
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(a) (b)

Figure 6.10.: Singular value densities obtained from the analytical model and the ex-
periment for (a) thin (b) thick sample with dense sampling of incident

fields (normalization factor=
√

⟨τ2⟩). Black dots: mean, black errorbars:
standard deviation of the normalized bin counts in 3 experimental singu-
lar value histograms. Solid curve: Histogram obtained from analytical
model using neff = 1.4 and ltr = 0.63 µm, with no adjusted parameters.

Beyond the peak, both histograms decay with a concave shape, the shape of the
analytical curve becomes convex at the large singular values and it is sharply
cut off at a singular value of 2.19. The experimental histogram, however, has a
tail, extending up to the singular value of 2.46. In Fig. 6.10 (b) the experimental
singular value histogram is shown along with the results of the analytical theory
when the fields incident on the thick ZnO sample are densely sampled. The
analytical theory results are similar to those obtained for the thin sample, in
line with the prediction from the waveguide model that both samples have about
the same number of open transmission eigenchannels. The analytical singular
value density function has a peak at the singular value of 0.25, lying at the
lower end of the range of plausible peak positions of the experimental histogram.
The analytical curve extend between the singular values of 0.14 and 2.13 and the
experimental singular value histograms lie between the singular values of 0.04 and
2.30, with the low singular values being attributed to the small overlap between
the different incident fields. The agreement between the analytical formula and
the experiment is very good for both thin and thick samples, which is remarkable,
taking into account the fact that no parameters were adjusted.

In Fig. 6.11, we show the singular value histograms of the thin and the thick
sample and the analytical theory curves. In this case, we use the checkerboard
sampling to reduce overlap between the incident fields. In Fig. 6.11 (a) both the
experimental histogram and the analytical probability density have no counts
below a singular value of 0.28 and the positions of the peaks overlap perfectly.
The shapes of the two histograms are also in good agreement. In this case, the
analytical theory again has a convex shape at large singular values and drops
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(a) (b)

Figure 6.11.: Singular value densities obtained from the analytical model and the ex-
periment for (a) thin (b) thick sample with sparse sampling of incident

fields (normalization factor=
√

⟨τ2⟩). Black dots: mean, black errorbars:
standard deviation of the normalized bin counts in 3 experimental sin-
gular value histograms. Solid curve: Spectrum obtained from analytical
model using neff = 1.4 and ltr = 0.63 µm, with no adjusted parameters.

sharply to 0 at a singular value of 1.85, whereas the experimental histograms
display a linear decrease and extend up to singular value of 2. In Fig. 6.11 (b)
the peak of the analytical theory curve is at 0.53, lying within the peak position
of the experimental histogram. The cut-off of the analytical formula occurs at
the singular value of 0.33 on the low side and at the singular value of 1.81 on the
high side; the experimental singular value histograms lie between the singular
values of 0.32 and 1.90. The correspondence between the experimental and zero
parameter theory is again remarkably good for both samples.
In this section, we compared the experimentally obtained singular value his-

tograms of 11-µm and 31-µm thick samples to the singular value probability
density functions predicted by an analytical theory developed by Goetschy and
Stone. The comparison is made using the values of the ltr and neff obtained
from independent measurements. The agreement between the analytical and ex-
perimental results is remarkable, considering that no parameters were adjusted
during the comparison. The good agreement between the analytical theory and
the experiment indicates that the samples are well described as ideal lossless
waveguides.

6.7. Conclusions

In this chapter, we described our transmission matrix measurements on ZnO
nanoparticle layers. Similar samples have been widely used in many experiments
until now, including wavefront shaping experiments and transmission matrix ex-
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periments [3, 5–8]. We carried out transmission matrix measurements in a regime
where correlations are expected to show up and indeed we did observe correlations
in the measured transmission matrices.

We applied the numerical model that was also described and used in Chapter 5
to these samples. Using sample parameters that were reported previously, we
obtained histograms that are qualitatively similar to the experimental results.
By comparing histograms obtained from the numerical model and experiments,
a valley of best fit parameters can be found, which agrees well with independent
measurements.

A comparison is made with an analytical theory developed for singular value
histograms under partial transmission matrix measurements. The agreement
between the experimental results and the predictions of the analytical theory is
remarkably good.

Our results indicate that layers of ZnO are sufficiently strongly scattering to
show mesoscopic correlations and that the transmission matrices retain sample
information, which can be retrieved with help of numerical or analytical models.
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CHAPTER 7

Intensity Statistics of Light Transmitted Through

Random Photonic ZnO Nanoparticle Media

7.1. Introduction

In this chapter, we describe our measurements on the intensity statistics of light
waves transmitted through random photonic media composed of ZnO nanopar-
ticles. Our aim is to observe predicted deviations from Rayleigh statistics in the
measured intensity distributions and to retrieve the value of the dimensionless
conductance g of the samples.
Statistical methods have been widely employed in the study of wave transport

through disordered systems, particularly to study mesoscopic correlations due to
interference effects [1–5]. The dimensionless conductance g, which is equal to the
number of open transmission eigenchannels is the parameter that is at the center
of interest in these studies and is defined in a waveguide geometry as

g ≈ Nltr
L

, (7.1)

with N the total number of transmission eigenchannels that light in the inci-
dent free modes can couple to; ltr is the transport mean free path and L is the
thickness. In a slab geometry, g is different than given by Eq. 7.1, and can be
calculated using an expanding waveguide model [6], in which case g still increases
with increasing N and ltr. As g becomes smaller, the mesoscopic effects become
more prominent [7–10].
In this chapter, we are interested in the intensity statistics of waves trans-

mitted through random media. We denote the normalized speckle intensity in
exit channel a by sab. The distribution P (sab) of speckle intensity is a Rayleigh
distribution when mesoscopic correlations are negligible

P (sab) =
1

⟨Tab⟩
e(−sab). (7.2)

Speckle intensity statistics, as studied in this chapter, have a mesoscopic cor-
rection proportional to g−1. In case of a large g, the distribution is well-described
by Rayleigh statistics [11].
Deviations from Rayleigh statistics have so far been reported in studies con-

ducted in the microwave regime with quasi 1D waveguides [1, 4], and with quasi
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2D resonators having randomly distributed conical scatterers [12]. The experi-
ments performed with quasi 1D waveguides are well-explained using the existing
mesoscopic transport theories [8, 9], whereas in the experiments performed with
quasi 2D resonators, the deviations are reported to be stronger than predicted
by mesoscopic theories and are described as freak waves [12]. In a study con-
ducted with visible light using stacks of glass slides, deviations from Rayleigh
statistics was observed in the crossover of 1D to quasi-1D regime [13] and in
another study conducted with near-infrared light through a 2D system, a devia-
tion from Rayleigh statistics was observed with a g of 0.28 [14]. The only study
where deviations from Rayleigh statistics are reported in 3D random photonic
samples in the optical regime is the recent study by Strudley et al. [5] where a
large deviation from Rayleigh statistics is observed in waves transmitted through
strongly scattering random photonic GaP nanowire ensembles. The statistics are
described by mesoscopic transport theory with a record low g of 3.6.

Until now deviations from Rayleigh statistics have not been reported in the
optical regime for 3D, isotropically scattering samples, such as random photonic
media composed of ZnO nanoparticles. In Chapter 6, we have reported observa-
tions of correlations in the transmission matrices of the same samples, indicating
they are strongly scattering. In this chapter, we report an independent confirma-
tion of the strong scattering in ZnO random media, based on speckle intensity
statistics. We observe deviations from Rayleigh statistics in the intensity dis-
tributions for the first time in an isotropic, three-dimensional, light scattering
sample, and model the observed distributions with a mesoscopic theory to re-
trieve g.

7.2. Experiment

The main elements for an experiment designed to study intensity statistics in
waves transmitted through disordered media are a monochromatic light source,
high numerical aperture (NA) objectives and a camera. The experiment was
performed with minor modifications to the setup that was previously used by
Strudley et al. [5] to measure the speckle intensity statistics of light transmitted
through strongly scattering random photonic GaP nanowire ensembles.

HeNe

objective 1 CCD

P

objective 2

ZnO

P L

Figure 7.1.: Experimental setup. HeNe: laser. ZnO: sample. Objective 1: 100×
0.9-NA objective. Objective 2: 100× 1.3-NA oil immersion objective. L:
200 mm focal length lens. P: polarizer. CCD: camera sensor.
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In Fig. 7.1, we show the experimental setup. Light from a Helium-Neon laser
with a wavelength of 632.8 nm and output power of 5 mW is focused on the
incident surface of the sample using a 0.9-NA microscope objective. Light trans-
mitted through the sample is collected with a 100× 1.3-NA oil immersion objec-
tive, where the ZnO-glass interface is imaged on to the CCD sensor plane using
a tube lens with 200 mm focal length. We detect light in a cross-polarized con-
figuration. Both the ZnO sample1 and the illumination objective are placed on
computer-controlled translation stages.

In the experiment, the illumination objective is first placed at the working
distance so that a tight focus is created on the sample surface. In this “in-focus”
configuration, 1000 images are captured per dataset, moving the sample by 1 µm
between the capturing of each image. In this way, the speckle patterns of any two
consecutive images are completely uncorrelated. A total number of 6 datasets
per sample are recorded for this configuration. Second, the illumination objective
is retracted by 25 µm and the measurement is repeated with this “out-of-focus”
configuration. The number of transmission eigenchannels that are excited by the
incident field is large in the out-of-focus configuration and is small in the in-focus
configuration. The measurements made in the out-of-focus configuration serve
as reference measurements for the case of large g and negligible mesoscopic cor-
rections, whereas the measurements performed in the in-focus configuration are
expected to give rise to a low g configuration, and strong mesoscopic fluctuations.

7.3. Analysis and Results

For each dataset, all captured images are averaged as follows to get an average
intensity envelope: An “area of interest” is determined that corresponds to the
area inside the full width at half maximum of the average intensity envelope. We
get the total transmitted intensity for each sample position (each captured image)
by summing the total intensity in the corresponding image. A moving average is
calculated by averaging the total transmitted intensity of sample positions within
10 µm. This interval of 10 µm is moved along the sample as the measurement
proceeds and each captured image is divided by the moving average to account
for fluctuations in the sample’s total transmission due to a gradual nonuniformity
in the thickness. A constant background is subtracted from all captured images.
Finally, each image is cropped to the area of interest and divided pixel by pixel
by the average intensity envelope to obtain sab = Tab/⟨Tab⟩. This procedure also
divides out the envelope in the intensity due to diffusion. We collect all of the
intensities in the 6 datasets into a single histogram, to obtain P (sab) vs sab.

Mesoscopic correlations show up most prominently in the high-intensity tail
of the distribution. There is an increased probability of observing high-intensity
speckles in the case of strong mesoscopic correlations [8, 9].

In Fig. 7.2 we show the P (sab) vs sab histograms using the data captured in-

1We use two separate random photonic samples with thicknesses of 11±1 µm and 31±6 µm,
which are the same samples as described in Chapter 6. The samples are referred to as the
thin sample and the thick sample, respectively in the rest of this chapter.
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focus and out-of-focus for (a) thin and (b) thick sample along with theoretical
curves. From the plots, it is seen that the histograms of the data captured in-focus
have higher counts at bins corresponding to high intensity speckle, as compared to
the data captured out-of-focus. As the out-of-focus data are expected to exhibit
Rayleigh statistics, this indicates that the in-focus data shows a deviation from
the Rayleigh statistics. In Fig. 7.2, we also show the theoretical speckle intensity
distribution for g = 40 and g = ∞, using the formula in Ref. [8]

P (sab) = e−
sab
c

{
1 +

1

3g

((sab
c

)2

− 4
sab
c

+ 2

)}
. (7.3)

Ideally, the contrast c = 1. The histograms of sab obtained in the out-of-focus
configuration show good agreement with the Rayleigh distribution including a
reduced contrast of c=0.95, which is attributed to the finite size of the CCD pixels
and to aberrations in the optics. We use the out of focus data as a calibration
measurement to fix the instrumental contrast parameter c.

The histogram of sab obtained in the in-focus configuration show good agree-
ment with the mesoscopic probability density function Eq. 7.3 for g = 40 and
the fixed value of c = 0.95. The value of g can be predicted from the known
sample parameters using an expanding waveguide model developed by Schef-
fold and co-workers [6]. Using the previously measured values ltr=0.7±0.2 µm
and neff=1.4±0.1 [15], along with the estimated illumination spot width of w =
0.45 µm, the expanding waveguide model predicts g between 20 and 48 for both
samples. An estimate of the error margins on the parameter g is made by eye by
plotting several theory curves with various g values and c = 0.95. A reasonable
agreement is found between these theory curves and the experimental data for
both samples with g in the range between 25 and 80, which agrees well with the
prediction of the expanding waveguide model.

For a more precise determination of g we have modeled the experimental data
with an analytical expression of the moments of the distribution developed by
Kogan et al. [9]. We use the following procedure: The moments ⟨sNab⟩/N ! of sab
are calculated and normalized so that the first moment ⟨sab⟩ = 1. The analytical
expression is fitted to the first five moments of the data, using the contrast c and
the dimensionless conductance g as the free parameters. The contrast obtained
from the modeling of the out-of-focus data is used as a fixed parameter during
modeling of the first five moments of the in-focus data and only g is a free
parameter for this fit.

In Fig. 7.3, we show the moments of the intensity distribution of fields trans-
mitted through the thin and thick samples. In both cases, the moments for the
out of focus data decrease monotonously while the in-focus moments appear to
decrease more slowly and then rise. The fits to the first 5 moments of the data in
the out-of-focus configuration result in g = ∞ for both samples.2 The contrast c
is found to be c = 0.946 for the thin sample and c = 0.949 for the thick sample.

2The g values obtained from the fit are on the order of 105 with a standard errors on the
order of 107, indicating that g obtained using this fitting procedure is very large and we
can not distinguish between a Rayleigh distribution and the distribution observed in the
out-of-focus experimental configuration.
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(a)

(b)

Figure 7.2.: Histogram of intensity distribution, P (sab) of fields transmitted through
(a) the thin and (b) the thick sample. Red and black data points: Mean
of normalized histograms of six different datasets captured with the in-
focus and the out-of-focus configurations, respectively. Errorbars are the
standard error of the normalized histograms. Dashed black line: Rayleigh
statistics with reduced contrast of 0.95. Solid red line: P (sab) obtained
using a mesoscopic theory [8], with g=40 and c=0.95.

It is seen that the fits to out-of focus data are in agreement with the first 10
moments obtained from the experiment. The same procedure repeated for the
in-focus configuration results in g = 35 for the thin sample and in g = 57 for the



120 Intensity Statistics of Light Transmitted Through Random Photonic ZnO
Nanoparticle Media

(a) (b)

Figure 7.3.: First ten moments of the intensity distributions of fields transmitted
through (a) thin and (b) thick sample. Red and black data points: Mo-
ments of the intensity distribution obtained from six different datasets
measured experimentally with the in-focus and out-of-focus configura-
tions, respectively. Solid black line: First ten moments of the distribu-
tion obtained from the mesoscopic theory [9] for (a) g = ∞ and c = 0.946
and (b) g = ∞ and c = 0.949. Solid red line: First ten moments of the
distribution obtained from the mesoscopic theory [9] for (a) g = 35.2 and
c = 0.946 and (b) g = 56.7 and c = 0.949, as fitted for the first 5 moments
of the distribution.

thick sample, fixing the contrast levels to those obtained from the out-of-focus
data. The standard errors obtained from the fits are on the order of 1. For both
samples, we find that the direct fits to the theory curves are consistent with the
experimental moment analysis. For both samples, a clear deviation between the
moments of sab as captured for the in- and out-of-focus configurations is seen.
This shows that the deviations from Rayleigh statistics also cause significant
shifts of the moments.

7.4. Conclusions

In this chapter, we have presented speckle intensity statistics of 11±1 µm and
31±6 µm thick layers of ZnO nanoparticles. It was observed that the data col-
lected in an out-of-focus configuration have an intensity distribution that agrees
well with a Rayleigh distribution with a reduced contrast. On the other hand,
the data collected in a configuration where a tight illumination focus is created
on the sample surface display mesoscopic corrections that deviate from Rayleigh
statistics. The in-focus intensity histograms agree with mesoscopic theory for a
dimensionless conductance g between 25 and 80. Using an analysis of the mo-
ments of the distribution we obtain g = 35 and g = 57 for the 11 µm and 31 µm
thick samples, respectively. These values agree well with predictions based on
previously reported parameters of similar samples. This is the first observation
of strong mesoscopic effects on the speckle intensity statistics of light transmitted
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through 3D isotropically scattering samples.
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CHAPTER 8

Summary

In this thesis, we have described a study on light transport through strongly
scattering 3D random photonic media. The main focus of the thesis is on trans-
mission matrix measurements of such random photonic media. We have described
our measurements and have interpreted the experimental results using numerical
and analytical models based on random matrix theory of light transport. In par-
ticular we have studied experimentally the singular value densities of measured
transmission matrices.
Ideally, singular values of a transmission matrix give the transmission coeffi-

cients of the transmission eigenchannels and have a bimodal density with maxima
at singular values of 1 and 0, given by the DMPK theory [1–3]. In an experiment,
only part of the transmission matrix can be measured, hence the singular value
density is modified. In an extreme case, when very small part of the transmission
matrix is measured, the singular value density assumes the shape as predicted by
Marcenko-Pastur theory, which gives the singular value density of an uncorrelated
random matrix.
The singular value histograms obtained from our measurements show strong

deviations from Marcenko-Pastur theory predictions. This indicates that the
transmission matrices that we measure have strong correlations. In other words,
information on the sample is not lost from the measured transmission matrix.
We have made several very interesting observations regarding the singular val-

ues of the measured transmission matrices. First, we have observed that modeling
our samples as waveguides with a diameter as the algebraic mean of the width
of the probed and detected areas provides an accurate description of slab ge-
ometry samples. Second, we conclude that in order to observe correlations, the
photonic strength of the sample must be high, besides, effective refractive in-
dex and geometry of the sample and experimental design play a very important
role. While we observe correlations in the transmission matrices of both random
photonic ZnO nanoparticle media and random photonic GaP nanowire ensem-
bles, we observed stronger correlations in the transmission matrices measured
with random photonic ZnO nanoparticle media as compared to the random pho-
tonic GaP nanowire ensembles. This is well-understood, since even though the
GaP nanowire ensembles are reported to have higher photonic strength than the
ZnO nanoparticle media, their effective refractive index is high as well, and the
sample geometry restricts the experiment to a lower numerical aperture on in-
cident side. Therefore, for studies directed towards observing mesoscopic effects
in transmission matrices of 3D samples, samples need to be optimized to have as
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high photonic strength as possible along with low effective refractive index and
a sample geometry that allows good optical access in an experiment.

We demonstrate how to retrieve the dimensionless scattering strength kltr from
the transmission matrix measurements performed with random photonic GaP
nanowire ensembles. The retrieved value of kltr is in the same range as the val-
ues reported previously. This is the first time that optical transmission matrix
measurements are applied for retrieving a sample property. We have successfully
shown that sample-specific information can be retrieved using transmission ma-
trix measurements and that transmission matrix measurements can provide an
alternative way for sample characterization.

Intensity fluctuations are another type of correlations that are indicative of
high photonic strength. We have measured the speckle intensity distribution of
light transmitted through strongly scattering random photonic ZnO nanoparticle
layers and observed deviations from Rayleigh statistics. This is the first obser-
vation of such deviations in isotropically scattering 3D random photonic media
in the visible regime. The observations are in line with predictions of meso-
scopic transport theories [4, 5] and are arising from the high photonic strength
of random photonic ZnO nanoparticle media.

Being in a group interested in both understanding and controlling light trans-
port through random photonic media, we carried out a study where we controlled
light transport through a random photonic TiO2 paint layer with wavefront shap-
ing. In this study, we performed wavefront shaping with a binary amplitude
modulation method, where we obtain a high intensity at a pre-determined target
behind the paint layer by removing the destructively interfering portion of the
incident light. The intensity in the target is theoretically limited to a fifth of the
intensity that can be obtained using phase modulation methods, however, the
binary amplitude modulation method has the advantage of being much faster
and easier to implement experimentally.
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Nederlandse samenvatting

In dit proefschrift presenteren we een studie over lichttransport door sterk ver-
strooiende materialen. Licht dat op een dergelijk medium invalt ondergaat vele
verstrooiingsgebeurtenissen voordat het weer uit het medium komt. Een groot
deel van wat we elke dag om ons heen zien, bijvoorbeeld papier, verf, wolken,
rook, huid zijn voorbeelden van verstrooiende media. Op dit moment kijkt u naar
een heel mooi voorbeeld van een dergelijke medium, een vel papier. U ziet dat
dit papier een mooie witte kleur heeft en helder lijkt, waardoor het aangenaam
is om dit proefschrift te lezen. Als u nu probeert door dit papier heen te kijken
ziet het er donkerder uit en kunt u niet zien wat er achter zit. In dit eenvoudige
experiment zien we twee belangrijke verschijnselen. Ten eerste nemen we waar
dat we niet kunnen zien door een meervoudig verstrooiend medium. Na het ver-
laten van het medium heeft het licht geen gelijkenis met het invallende licht. Ten
tweede zien we dat een meervoudig verstrooiend medium meer licht reflecteert
dan doorlaat.

De experimenten in dit proefschrift zijn uitgevoerd met een coherente licht-
bron, namelijk een laser. Wanneer coherent licht door een verstrooiend medium
schijnt, ontstaat er een golffront dat bekend staat als een spikkelpatroon, be-
staande uit lichte en donkere vlekken als gevolg van interferentie. Het golffront
dat wordt doorgelaten door het sample is heel anders dan het golffront dat in-
valt op het sample. Het lijkt erop dat er geen relatie is tussen de inkomende
en doorgelaten golven maar die is er wel. Als we een identiek golffront op het-
zelfde sample sturen is het doorgelaten golffront onveranderd. De relatie tussen
de invallende en doorgelaten golven wordt bepaald door de optische transmissie
matrix van het sample. Als deze matrix bekend is, dan weet men welke inko-
mende golf aanleiding geeft tot welke doorgelaten golf. Dan kan men met deze
kennis een vooraf ontworpen golf naar het verstrooiende medium sturen, zodat
het doorgelaten golffront de gewenste vorm heeft. Voor complexe media zoals wit
papier blijkt evenwel dat de transmissie matrix een geweldig groot en ingewikkeld
object is.

Volgens de theorie kan men het inkomende golffront zo ontwerpen dat al het
licht door het verstrooiende materiaal, bijvoorbeeld dit papier, wordt doorgela-
ten. Evenzo kan men het golffront zo ontwerpen dat al het licht wordt gereflec-
teerd. Een willekeurige invallende golf is een superpositie van golven die volledig
doorgelaten en golven die volledig gereflecteerd worden door het verstrooiende
materiaal. De theorie voorspelt dat het aantal onafhankelijke golven die volledig
doorgelaten worden veel kleiner is dan het aantal gereflecteerde golven. Dit leidt
ertoe dat de doorgelaten golven superposities zijn van een klein aantal onafhanke-
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lijke golven en daardoor zijn gecorreleerd. Men kan deze correlaties onderzoeken
door de transmissie matrices van verstrooiende media te meten en bestuderen.
Pas onlangs, hebben verschillende groepen metingen van redelijk gemeld grote
delen van optische transmissie matrices van verstrooiende media. In de optische
transmissie matrix metingen gemeld tot nu toe, zijn dergelijke correlaties niet
waargenomen.

Een groot deel van dit proefschrift is gewijd aan het meten en analyseren van
optische transmissie matrices van sterk verstrooiende materialen. De bestudeerde
samples zijn sterk verstrooiend, wat betekent dat de gemiddelde afstand tussen
twee verstrooiingsgebeurtenissen vergelijkbaar is met de golflengte van het licht
in het verstrooiende medium. Als de verstrooiing sterker is, dan is het aantal
orthogonale golven dat volledig doorgelaten wordt nog kleiner. Dit maakt de
doorgelaten golven nog sterker gecorreleerd. Wanneer een voldoende groot deel
van de transmissie matrix wordt gemeten, dan zijn deze correlaties zichtbaar
te maken in een wiskundige representatie, namelijk het singuliere waarde histo-
gram van de gemeten transmissie matrix. In hoofdstuk 5 en 6 beschrijven we
respectievelijk de transmissie matrix metingen van verzamelingen van wanorde-
lijke fotonische GaP nanodraadjes en wanordelijke fotonische ZnO nanodeeltjes.
In beide hoofdstukken bestuderen we de singuliere waarde histogrammen van
de gemeten matrices en zien dat deze histogrammen afwijken van die van niet-
gecorreleerde matrices, wat aangeeft dat de doorgelaten golven gecorreleerd zijn.
Bij ons weten is dit voor het allereerst dat zulke correlaties in de transmissie ma-
trix elementen van licht zijn gerapporteerd. In hoofdstuk 5 demonstreren we ook
dat we de verstrooiingssterkte van de verzamelingen van wanordelijke fotonische
GaP nanodraadjes kunnen bepalen uit de gemeten transmissie matrix.

We beschrijven de experimentele procedure voor de transmissie matrix metin-
gen in detail in hoofdstuk 4. Daar hebben we ook een analyse van de effecten
van ruis, veroorzaakt door laserintensiteit fluctuaties, elektrische signalen en zo
voort, op de singuliere waarde histogrammen.

In hoofdstuk 7 bestuderen we de intensiteitsschommelingen in het spikkelpa-
troon dat wordt doorgelaten door verzamelingen van wanordelijke fotonische ZnO
nanodeeltjes. We merken op dat het gemeten spikkel intensiteitshistogram over-
eenstemt met de theorie over mesoscopisch transport en deze overeenstemming
bevestigt dat het bestudeerde sample een klein aantal golven volledig doorlaat.

In hoofdstuk 3 beschrijven we een experiment waar we lichttransport door een
verstrooiende TiO2 verflaag controleren met golffrontmodulatie. Golffrontmodu-
latie is een methode die is ontwikkeld in onze groep en die actieve controle over
licht transport door sterk verstrooiende materialen mogelijk maakt zonder initiële
kennis van de transmissie matrix van het sample. Het wordt veel gebruikt zowel
in onze groep als wereldwijd. In hoofdstuk 3 ontwikkelen we golffrontmodulatie
met binaire amplitudemodulatie. Deze methode is gebaseerd op de waarneming
dat sommige delen van de invallende golf op een gekozen positie destructief in-
terfereren met de rest, en dus een negatieve bijdrage leveren. Met hulp van een
algoritme blokkeren we het deel van de golf dat destructief interfereert met de
rest. Daardoor krijgen we een heldere spot achter het verstrooiende sample.
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ve dede, sizin sayenizde hayatımın ilk yıllarını hep çok mutlu ve güzel bir şekilde
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